PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Second law optimization and parametric study of a solar air heater having artificially roughened absorber plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In present article a mathematical model of arc shape wire roughened solar air heater, on the basis of energy and exergy output rates, entropy generation rate and augmentation entropy generation number, has been developed. A parametric study leading to entropy generation minimization has also been performed. In the analysis the geometric and operating parameters which have been considered as variable are: inlet air temperature, duct depth, collector width to duct depth ratio, mass flow rate per unit collector area, and temperature rise parameter. Results have been presented to see the effects of these values on the energy and exergy output rates of the roughened solar air heater. Effect of different values of wire rib roughness parameters on entropy generation has also been presented. Finally, design curves and optimization for different rib roughness parameters on the basis of minimum entropy generation number with temperature rise parameter, have been presented and optimum values also have been found out 0.004 to 0.010 (Km2 )/W. The entropy generation rate obtained for the system, in the present work has been compared with those obtained for solar air heater with different roughness geometries on absorber plates available in the literature for common roughness parameters and operating parameters which validate the present results.
Rocznik
Strony
107--135
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wz.
Twórcy
  • Department of Mechanical Engineering, National Institute of Technology, Jamshedpur, Jharkhand, India, Pin-831014
  • Department of Mechanical Engineering, National Institute of Technology, Jamshedpur, Jharkhand, India, Pin-831014
Bibliografia
  • [1] Duffie J.A., Beckman W.A.: Solar Engineering of Thermal Processes, 2nd Edn. John Wiley, New York 1991.
  • [2] Lanjewar A., Bhagoria J.L., Sarviya R.M.: Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness. Exp. Thermal Fluid Sci. 35(2011), 986–995.
  • [3] Prasad R.K.: Thermal performance characteristics of unidirectional flow porous bed solar energy collectors for heating air. PhD thesis 1993 IIT, Roorkee.
  • [4] Sahu M.K., Prasad R.K.: Investigation on optimal thermohydraulic performance of a solar air heater having arc shaped wire rib roughness on absorber plate. Int. J. Thermodyn. 19(2016), 4, 214–224, DOI: 10.5541/ijot.5000198432.
  • [5] Gawande V.B., Dhoble A.S., Zodpe D.B.: Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review. Renew. Sust. Energ. Rev. 32(2014), 347–378.
  • [6] Singh S., Chander S., Saini J.S.: Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate. Energy 37(2012), 749–758.
  • [7] Chamoli S., Thakur N.S.: Exergetic performance evaluation of solar air heater having V-down perforated baffles on the absorber plate. J. Therm. Anal. Calorim. 117(2014), 2, 909–923.
  • [8] Kazé C.V.A., Tchinda R.: Exergy analysis of an air solar heater. Int. J. Exergy. 11(2012), 1, 19–34.
  • [9] Sciacovelli A., Verda V., Sciubba E.: Entropy generation analysis as a design tool – A review. Renew. Sust. Energ. Rev. 42(2015), 1167–1181.
  • [10] Hepbasli A.: A key review on exergetic analysis and assessment of renewable energy resources for sustainable future. Renew. Sust. Energ. Rev. 12(2008), 593–661.
  • [11] Saidur R., Boroumand Jazi G., Mekhlif S., Jameel M.: Exergy analysis o solar energy applications. Renew. Sust. Energ. Rev. 16(2012), 350–356.
  • [12] Bejan A.: A study of entropy generation in fundamental convective heat transfer. J. Heat Trans. 101(1979), 718-725.
  • [13] Bejan A.: The concept of irreversibility in heat exchanger design: counter flow heat exchangers for gas–to-gas applications. J. Heat Trans. 99(1977), 374–380.
  • [14] Nag P.K., Mukherjee P.: Thermodynamic optimization of convective heat transfer through a duct with constant wall temperature. Int. J. Heat Mass Tran. 30(1987), 401–405.
  • [15] Ko T.H., Ting K.: Entropy generation and optimal analysis for laminar forced convective in curved rectangular ducts: a numerical study. Int. J. Therm. Sci. 45(2006), 138–150.
  • [16] Ko T.H.: Numerical analysis of entropy generation and optimal Reynolds number for developing laminar forced convection in double-sine ducts with various aspect ratios. Int. J. Heat Mass Tran. 49(2006), 718–26.
  • [17] Yilbas B.S., Shuja S.Z., Budair M.O.: Second law analysis of a swirling flow in a circular duct with restriction. Int. J. Heat Mass Tran. 42(1999), 4027–4041.
  • [18] Altfeld K., Leiner W., Fiebg M.: Second law optimization of flat plate solar air heaters. Solar Energy 41(1988), 309–317.
  • [19] Sahiti N., Krasniqi F., Fejzullahu Xh., Bunjaku J., Muriqi A.: Entropy generation minimization of a double-pipe pin fin heat exchanger. Appl. Therm. Eng. 28(2008), 2337–2344.
  • [20] Bejan A.: Fundamental of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energ. Res. 26(2002), 545, DOI:10.1002/er.804
  • [21] Ratts E.B., Raut A.G.: Entropy generation minimization of fully developed internal flow with constant heat flux. J. Heat Trans. 126(2004), 656-659.
  • [22] Zhou Y.Y., Zhu L., Yu J.L, Li Y.Z.: Optimization of plate fin heat exchanger by minimizing specific entropy generation rate. Int. J. Heat Mass Tran. 78(2014), 942–946.
  • [23] Layek A., Saini J.S., Solanki S.C.: Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate. Renew. Energ. 32(2007), 1967–80.
  • [24] Hedayatizadeh M., Yahya A., Sarhaddi F., Farahat S., Safavinejad A., Chaji H.: Analysis of exergy and parametric study of a v-corrugated solar air heater. Heat Mass Transfer 48(2012), 1089–1101.
  • [25] Gupta M.K, Kaushik S.C.: Performance evaluation of solar air heater having expanded metal mesh as artificial roughness on absorber plate. Int. J. Therm. Sci. 48(2009), 1007–1016.
  • [26] Tao L., Wenxian Lin: A Parametric Study on the Thermal Performance of a solar air collector with a V-Groove absorber. Int. J. Green Energy 4(2007), 601–622.
  • [27] Saini S.K, Saini R.P.: Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Solar Energy 82(2008), 1118–1130.
  • [28] Keenan J.H.: Availability and irreversibility in thermodynamics. Br. J. Appl. Phys. 2(1951), 183–192.
  • [29] Guoy G.: Surlenergie utilizable (on usable energy). J. Physics 11(1889), 8, 501–518.
  • [30] Stodola A.: Die Kreisprozesse der Gasmaschine (gas engine cycles). Z Ver Dtsch Ing 32(1898), 1086–1091.
  • [31] Wei Sun, Jie Ji, Wei He: Influence of channel depth on the performance of solar air heaters. Energy 35(2010), 4201–4207.
  • [32] Lanjewar A., Bhagoria J.L., Sarviya R.M.: Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy 36(2011), 4531–4541.
  • [33] Bopche S.B, Tandale M.S.: Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int. J. Heat Mass Tran. 52(2009), 2834–2848.
  • [34] Aharwal K.R., Gandhi B.K., Saini J.S.: Experimental investigation on heattransfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew. Energ. 33(2008), 585–596.
  • [35] Gupta D., Solanki S.C., Saini J.S.: Thermohydraulic performance of solar air heaters with roughened absorber plates. Solar Energy 61(1997), 33–42.
  • [36] Karmare S.V., Tikekar A.N.: Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int. J. Heat Mass Tran. 50(2007), 4342–51.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2da34661-68ab-484c-b112-600bc850c34e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.