PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal Toxicity Reduction on Seed Germination and Seedling Growth of Raphanus sp. and Arabidopsis sp. Using Date Seed Biochar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The date seeds (DS) biochar produced at 550°C was found to be appropriate for remediation of metal-contaminated water. This was evident in the data, which showed that applying the biochar to Raphanus sp. and Arabidopsis sp. reduced metal stress and toxicity. The LC50 of all tested metals solutions on seed germination was increased significantly (P<0.05) in Raphanus sp. by 10.4, 2.3, 5, 1.8, and 3 folds, respectively, for Cu, Zn, Cd, Pb, and metals combination, and by 5, 3.4, 6, 5.5, and 2.5 folds in Arabidopsis sp. For seedling growth, the DS biochar enhanced the LC50 significantly (P<0.05) of the same metals in Raphanus sp. by 9.6, 9.2, 13.8, 12.1, and 1.6 folds, and in Arabidopsis sp. by 7, 3, 2.3, 2.9, and 2.7 folds, respectively. The LC of all metals was increased by 1.5 to 8 times and 1.5 to 12 times, respectively, for the seed germination and seedling growth of Raphanus sp. and Arabidopsis sp. Both plants were able to grow shoots at higher metal concentrations when the DS biochar was employed, as compared to the case when no DS biochar was utilized. In terms of shoot length, similar results were achieved, with the DS biochar application significantly enhancing shoot length (P<0.05), as compared to the case when no biochar was applied. Despite the fact that Arabidopsis sp. was more sensitive to metals than Raphanus sp., both plants raised their RGR and TI and reduced their phytotoxicity values in all metals following the DS biochar application, and sprouted at higher metal concentrations than before. These findings introduce a successful eco-friendly adsorbent for metal removal from aquatic environments, paving the way for more investigations.
Rocznik
Strony
67--82
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mutah University, Karak, 61710, Jordan
Bibliografia
  • 1. Ahmad, M., Lee, S.S., Yang, J.E., Ro, H.M., Lee, Y.H., Ok, Y.S. 2012. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and environmental safety, 79, 225–231.
  • 2. Al-Tarawneh, A. 2022. Biochar as a Cadmium Scavenger in the Aquatic Environment Remediation: Date Seeds as Raw Material. Journal of Ecological Engineering, 23(3), 270–280.
  • 3. Angulo-Bejarano, P.I., Puente-Rivera, J., Cruz-Ortega, R. 2021. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4), 635.
  • 4. Ashagre, H., Almaw, D., Feyisa, T. 2013. Effect of copper and zinc on seed germination, phytotoxicity, tolerance and seedling vigor of tomato (Lycopersicon esculentum L. cultivar Roma VF). International Journal of Agricultural Science Research, 2(11), 312–317.
  • 5. Azam, M., Jan, A.T., Kumar, A., Siddiqui, K., Mondal, A.H., Haq, Q.M. 2018. Study of pandrug and heavy metal resistance among E. coli from anthropogenically influenced Delhi stretch of river Yamuna. brazilian journal of microbiology, 49, 471–480.
  • 6. Bandara, T., Xu, J., Potter, I.D., Franks, A., Chathurika, J.B.A.J., Tang, C. 2020. Mechanisms for the removal of Cd (II) and Cu (II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere, 254, 126745.
  • 7. Becerril, J. M., González-Murua, C., Muñoz-Rueda, A., De, M.R., Becerril, J.M., González-Murua, C., & Muñoz-Rueda, A. 1989. Changes induced by cadmium and lead in gas exchange and water relations. Plant Physiol. Biochem, 27(6), 913–918.
  • 8. Chai, W.S., Cheun, J.Y., Kumar, P.S., Mubashir, M., Majeed, Z., Banat, F., Show, P.L. 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589.
  • 9. Chen, S.Q., Li, M., Ma, X.Y., Zhou, M.J., Wang, D., Yan, M.Y., Yao, K.F. 2021. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere, 264, 128392.
  • 10. Chen, W.H., Hoang, A.T., Nižetić, S., Pandey, A., Cheng, C.K., Luque, R., Nguyen, X.P. 2022. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection.
  • 11. El Rasafi, T., Nouri, M., Bouda, S., Haddioui, A. 2016. The effect of Cd, Zn and Fe on seed germination and early seedling growth of wheat and bean. Ekológia (Bratislava), 35(3), 213–223.
  • 12. Guittonneau, F., Abdelouas, A., Grambow, B., Huclier, S. 2010. The effect of high power ultrasound on an aqueous suspension of graphite. Ultrasonics sonochemistry, 17(2), 391–398.
  • 13. Gupta, S., Sireesha, S., Sreedhar, I., Patel, C.M., Anitha, K.L. 2020. Latest trends in heavy metal removal from wastewater by biochar based sorbents. Journal of Water Process Engineering, 38, 101561.
  • 14. Hernandez-Allica, J., Becerril, J.M., Garbisu, C. 2008. Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution, 152(1), 32–40.
  • 15. Hoffmann, N., Tortella, G., Hermosilla, E., Fincheira, P., Diez, M. C., Lourenço, I. M., Rubilar, O. 2022. Comparative Toxicity Assessment of Eco-Friendly Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Plants and Aquatic Model Organisms. Minerals, 12(4), 451.
  • 16. Houben, D., Evrard, L., Sonnet, P. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.
  • 17. Huang, Y., Luo, L., Xu, K., Wang, X.C. 2019. Characteristics of external carbon uptake by microalgae growth and associated effects on algal biomass composition. Bioresource Technology, 292, 121887.
  • 18. Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I., Dumat, C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.
  • 19. Kranner, I., Colville, L. 2011. Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72(1), 93–105.
  • 20. Kumpiene, J., Giagnoni, L., Marschner, B., Denys, S., Mench, M., Adriaensen, K., Renella, G. 2017. Assessment of methods for determining bioavailability of trace elements in soils: a review. Pedosphere, 27(3), 389–406.
  • 21. Li, W., Khan, M.A., Yamaguchi, S., Kamiya, Y. 2005. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant growth regulation, 46(1), 45–50.
  • 22. Li, Y., Shao, M., Huang, M., Sang, W., Zheng, S., Jiang, N., Gao, Y. 2022. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. Chemosphere, 286, 131470.
  • 23. Liu, L., Chen, H., Cai, P., Liang, W., Huang, Q. 2009. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials, 163(2–3), 563–567.
  • 24. Mahdi, Z., Qiming, J.Y., El Hanandeh, A. 2018. Removal of lead (II) from aqueous solution using date seed-derived biochar: batch and column studies. Applied Water Science, 8(6), 1–13.
  • 25. Mahmood, T., Islam, K.R., Muhammad, S. 2007. Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pakistan Journal of Botany, 39(2), 451.
  • 26. McBride, M., Sauve, S., Hendershot, W. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48(2), 337–346.
  • 27. Mishra, J., Saini, R., Singh, D. 2021. Review paper on removal of heavy metal ions from industrial waste water effluent. IOP Conference Series: Materials Science And Engineering, 1168(1), 012027. DOI: 10.1088/1757-899x/1168/1/012027
  • 28. Mocova, K.A., Petrova, S., PohoRely, M., Martinec, M., Tourinho, P.S. 2022. Biochar reduces the toxicity of silver to barley (Hordeum vulgare) and springtails (Folsomia candida) in a natural soil. Environmental Science and Pollution Research, 1–10.
  • 29. Ngambia, A., Ifthikar, J., Shahib, I. I., Jawad, A., Shahzad, A., Zhao, M., Chen, Z. 2019. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg (II) composite. Science of the Total Environment, 691, 306–321.
  • 30. Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., Chuasavathi, T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and soil, 348(1), 439–451.
  • 31. Prudnikova, E.V., Neaman, A., Terekhova, V.A., Karpukhin, M.M., Vorobeichik, E.L., Smorkalov, I.A., Peñaloza, P. 2020. Root elongation method for the quality assessment of metal-polluted soils: Whole soil or soil-water extract? Journal of Soil Science and Plant Nutrition, 20(4), 2294–2303.
  • 32. Rajoria, S., Vashishtha, M., Sangal, V.K. 2022. Treatment of electroplating industry wastewater: a review on the various techniques. Environmental Science and Pollution Research, 1–51.
  • 33. Rebello, S., Sivaprasad, M.S., Anoopkumar, A.N., Jayakrishnan, L., Aneesh, E.M., Narisetty, V., Pandey, A. 2021. Cleaner technologies to combat heavy metal toxicity. Journal of Environmental Management, 296, 113231.
  • 34. Rehman, M.Z.U., Rizwan, M., Ali, S., Fatima, N., Yousaf, B., Naeem, A., Ok, Y.S. 2016. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218–225.
  • 35. Shaikh, I.R., Shaikh, P.R., Shaikh, R.A., Shaikh, A.A. 2013. Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded. Research Journal of Chemical Sciences, 3(6), 14−23.
  • 36. Shan, R., Shi, Y., Gu, J., Wang, Y., Yuan, H. 2020. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chinese Journal of Chemical Engineering, 28(5), 1375–1383.
  • 37. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., Joshi, M.K. 2021. Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688.
  • 38. Singh, R., Gautam, N., Mishra, A., Gupta, R. (2011). Heavy metals and living systems: An overview. Indian journal of pharmacology, 43(3), 246–253. https://doi.org/10.4103/0253-7613.81505
  • 39. Singh, A., Pal, D. B., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T.,... & Gupta, V. K. (2022). Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresource Technology, 343, 126154.
  • 40. Soudek, P., Valseca, I.R., Petrová, Š., Song, J., Vaněk, T. 2017. Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds. Journal of Geochemical Exploration, 182, 157–165.
  • 41. Stuckey, J.W., Neaman, A., Verdejo, J., Navarro-Villarroel, C., Peñaloza, P., Dovletyarova, E.A. 2021. Zinc Alleviates Copper Toxicity to Lettuce and Oat in Copper-Contaminated Soils. Journal of Soil Science and Plant Nutrition, 21(2), 1229–1235.
  • 42. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. 2012. Heavy metal toxicity and the environment. Experientia supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • 43. Trentin, E., Cesco, S., Pii, Y., Valentinuzzi, F., Celletti, S., Feil, S. B., Mimmo, T. 2022. Plant species and pH dependent responses to copper toxicity. Environmental and Experimental Botany, 104791.
  • 44. Ungureanu, N., Vlăduț, V., Voicu, G. 2020. Water scarcity and wastewater reuse in crop irrigation. Sustainability, 12(21), 9055.
  • 45. Wierzbicka, M., Obidzińska, J. 1998. The effect of lead on seed imbibition and germination in different plant species. Plant science, 137(2), 155–171.
  • 46. Yadav, M., Singh, G., Jadeja, R.N. 2021. Physical and Chemical Methods for Heavy Metal Removal. Pollutants and Water Management: Resources, Strategies and Scarcity, 377–397.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d985e9d-d561-4dda-b7da-fefae89c26ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.