Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cube Satellites are miniaturized satellites used for space research with a mass of not more than 1.33 kg per unit. They are widely used in space applications because of its low cost of manufacturing and flexibility of applications. Since, they use commercial off-the-shelf components, thermal consideration of internal components of 1-unit cube satellites becomes a necessity. In this paper, transient thermal analysis of a 1-unit cube satellite is conducted to analyze its behavior during the first 29 seconds of orbit insertion from the launch vehicle. Transient thermal analysis yielded a temperature range that exceeded the optimum limit. As a result, to reduce heat dissipation, two main types of thermal management systems for satellites: active control and passive control systems are included. To maintain critical components at their operating temperature, a passive thermal control is implemented. Thermal strap and multi-layer insulation are used to analyze internal components of 1-unit cube satellite. Using graphite fiber thermal strap and aerogel multi-layer insulation for internal components, the 1-unit modular cube satellite is found to be more suitable under low earth orbit conditions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1247--1254
Opis fizyczny
Bibliogr. 22 poz., fot., rys., wzory
Twórcy
autor
- Dr. Vishwanath Karad Mit World Peace University, Pune, India
autor
- Dr. Vishwanath Karad Mit World Peace University, Pune, India
autor
- Dr. Vishwanath Karad Mit World Peace University, Pune, India
Bibliografia
- [1] S.J. Kang, H.U. Oh, On-orbit thermal design and validation of 1U standardized CubeSat of STEP cube lab, International Journal of Aerospace Engineering 2016, (1-17) (2016). DOI: https://doi.org/10.1155/2016/4213189
- [2] J.R. Wertz, W.J. Larson, Space mission analysis and design, Microcosm Press and Kluwer Academic Publishers (3rd ed.) (1999).
- [3] N. Athirah, M. Afendi, K. Hafizan, N.A.M. Amin, M.S.A. Majid, Stress and thermal analysis of cubesat structure, Applied Mechanics and Materials 554, (426-430) (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMM.554.426
- [4] A. Gomes, C. Guerra, Design, Thermal analysis and integration of small satellites with a network of autonomous vehicles, Faculty of Sciences of the University of Porto (2018).
- [5] S. Chandrashekar, T. Karlsson, Thermal Analysis and Control of MIST CubeSat, Master thesis, KTH Royal Institute of Technology, Sweden (2017).
- [6] J.P. Mason, B. Lamprecht, T.N. Woods, C. Downs, CubeSat on-orbit temperature comparison to thermal-balance-tuned-model predictions, Journal of Thermophysics and Heat Transfer 32, 1, (237-255) (2018). DOI: https://doi.org/10.2514/1.T5169
- [7] H.H. Nguyen, P.S. Nguyen, Communication Subsystems for Satellite Design, Satellite Systems - Design, Modeling, Simulation and Analysis, IntechOpen (2021). DOI: https://doi.org/10.5772/intechopen.73789
- [8] https://www.nasa.gov/smallsat-institute/sst-soa-2020
- [9] S. Selvadurai, A. Chandran, D. Valentini, B. Lamprecht, Passive Thermal Control Design Methods, Analysis, Comparison, and Evaluation for Micro and Nanosatellites Carrying Infrared Imager, Applied Sciences 12, 6, (2022). DOI: https://doi.org/10.3390/app12062858
- [10] A. Rossi, Thermal Management Methods of Nanosatellites, International Journal of Engineering and Technical Research 2, 10, (82-85) (2014).
- [11] S. Waydo, D. Henry, M. Campbell, CubeSat Design for LEO-Based Earth Science Missions, IEEE Aerospace Conference Proceedings 1 (1-11) (2002). DOI: https://doi.org/10.1109/AERO.2002.1036863
- [12] N.S. Gokhale, S.S. Deshpande, S.V. Bedekar, A.N. Thite, Meshing, in: Practical Finite Element Analysis (1st ed.), Finite to Infinite, (2018).
- [13] C.E. Lopez, G.S. Jacobson, J.N. Peters, N.A. Bograd, P.J. Kroyak, Worcester Polytechnic Institute, Design and Analysis for CubeSat Missions, (2018).
- [14] M. Bulut, A. Kahriman, N. Sozbir, Design and Analysis for Thermal Control System of Nanosatellite, Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition IMECE2010 (1-4) (2010). DOI: https://doi.org/10.1115/IMECE2010-39716
- [15] S. Tachikawa, H. Nagano, A. Ohnishi, Y. Nagasaka, Advanced Passive Thermal Control Materials and Devices for Spacecraft: a Review, International Journal of Thermophysics 43, 6, (2022). DOI: https://doi.org/10.1007/s10765-022-03010-3
- [16] G.S. Salinas, E.B. Ramírez, E.A. Gauna, Thermal Analysis of a 3U-Cubesat, a Case Study of Pakal Satellite, Proceedings of the 8th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’21) (137-144) (2021). DOI: https://doi.org/10.11159/ffhmt21.137
- [17] R. Seetharaman, A. Singh, R.S. Sumit, J. Krishnaprasad, S. Nazim, G. Watts, Modal, Static Structural and Transient Thermal Analysis of A Standard 1U Cubesat, Birla Institute of Technology and Science Pilani (2019). DOI: https://doi.org/10.13140/RG.2.2.34054.52805
- [18] J. Carlos, C. Ortega, N. Saraí, M. Sisniega, U.A. Mendoza, R.O. Rivas, Analysis of the temperature of a 1U CubeSat due to radiation in space, the 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM17) (1-10) (2017).
- [19] A. Donohoe, D.S. Battisti, Atmospheric and surface contributions to planetary albedo, Journal of Climate 24, 16, (4402-4418) (2011). DOI: https://doi.org/10.1175/2011JCLI3946.1
- [20] G.l. Stephens, D. O’Brien, P.J. Webster, P. Pilewski, S. Kato, J.L. Li, The albedo of earth, Reviews of Geophysics 53, 1, (141-163) (2015). DOI: https://doi.org/10.1002/2014RG000449
- [21] https://spaceplace.nasa.gov/what-powers-a-spacecraft/en/
- [22] S. Corpino, M. Caldera, F. Nichele, M. Masoero, N. Viola, Thermal design and analysis of a nanosatellite in low earth orbit, Acta Astronautica 115, (247-261) (2015). DOI: https://doi.org/10.1016/j.actaastro.2015.05.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d96806e-b828-4139-990c-2b869b674f52