Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Hydrogen sulphide (H2S) occurs in groundwater in various lithostratigraphic units of the Zechstein Basin in the Legnica-Głogów Copper Basin (SW Poland). This region is located in the Fore-Sudetic Monocline within which, several tens of kilometres NE of the study area, at greater depths, natural gas fields with hydrogen sulphide (H2S) occur. The Main Dolomite (Ca2), in which H2S-containing natural gas has accumulated, is younger than the Zechstein Limestone (Ca1), which is actively mined. The Ca2 and Ca1 formations are separated by a thick anhydrite succession including a wedge-shaped salt body. Hydrochemical analyses of 18 groundwater samples taken from different horizons within the Zechstein strata showed spatial variability of H2S and chloride concentrations. A conceptual model of groundwater flow with dissolved H2S in the Zechstein formations was developed. H2S migration is associated with groundwater flow between the Ca2 and Ca1 aquifers through fissures in the anhydrite strata that separate them. Hydraulic contact through fissures in the anhydrite layers is the result of long-term exploitation of the underground copper deposit. Groundwater flow between the layers is influenced by a large change in the piezometric pressure of the groundwater in the depression cone caused by mining drainage.
Czasopismo
Rocznik
Tom
Strony
art. no. 39
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- KGHM Polska Miedź S.A., M. Skłodowskiej-Curie 48, 59-301 Lubin, Poland
Bibliografia
- 1. Aali, J., Rahmani, O., 2012. H2S - Origin in South Pars gas field from Persian Gulf, Iran. Journal of Petroleum Science and Engineering, 86-87: 217-224. https://doi.org/10.1016/j.petrol.2012.03.009
- 2. Becker, R., Fiszer, J., Kalisz, M., 2007. Hydrogeologia (in Polish). In: Monografia KGHM Polska Miedź S.A. (ed. A. Piestrzyński): 82-89. KGHM CUPRUM, Wrocław.
- 3. Bilkiewicz, E., Kowalski, T., 2020. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite (Ca2) strata in SW part of the Polish Permian Basin: stable isotope and hydrous pyrolysis studies. Journal of Petroleum Science and Engineering, 192: 107296. https://doi.org/10.1016/j.petrol.2020.107296
- 4. Bocheńska, T., 1988. Kształtowanie się warunków hydrodynamicznych w lubińsko-głogowskim obszarze miedzionośnym pod wpływem odwadniania kopalń (in Polish). Acta Universitatis Wratislaviensis, 1044.
- 5. Bocheńska, T., 2003. Model hydrogeologiczny obszaru złoża (in Polish). In: Hydrogeologia polskich złóż kopalin i problemy wodne górnictwa, T. 2 (eds. Z. Wilk and T. Bocheńska): 45-56. Wydawnictwa AGH, Kraków.
- 6. Burtan, Z., 2017. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland). E3S Web Conf., 24: 1004. https://doi.org/10.1051/e3sconf/20172401004
- 7. Cheng, Y., Feng, Z., Guo, C., Chen, P., Tan, C., Shi, H., Luo, X., 2022. Links of hydrogen sulfide content with fluid components and physical properties of carbonate gas reservoirs: a case study of the Right Bank of Amu Darya, Turkmenistan. Frontiers in Earth Science, 10: 910666. https://doi.org/10.3389/feart.2022.910666
- 8. D'Amore, F., Rivera, J.R., Giusti, D., Rossi, R., 1990. Preliminary geochemical and thermodynamic assessment of the geothermal resources, Sulphur Springs area, St Lucia, W.I. Applied Geochemistry, 5: 587-604. https://doi.org/10.1016/0883-2927(90)90058-D
- 9. Deng, Q., Wang, Q., Liu, M., Zhao, F., 2014. Geological factors controlling H2S in coal seams. In: Mine Planning and Equipment Selection (eds. C. Drebenstedt and R. Singhal): 619-627. Springer, Cham. https://doi.org/10.1007/978-3-319-02678-7_59
- 10. Duda, R., Duliński, M., Pawlik, W., Sidełko, M., 2023. Isotopic identification of groundwater circulation and mixing in the Legnica-Głogów Copper District mines. Applied Geochemistry, 158: 105804. https://doi.org/10.1016/j.apgeochem.2023.105804
- 11. Garlicki, A., Kijewski, P., Szybist, A., Jamróz, J., Markiewicz, A., 2007. Sól kamienna na obszarze przedsudeckim (in Polish). In: Monografia KGHM Polska Miedź S.A. (ed. A. Piestrzyński): 269-277. KGHM CUPRUM, Wrocław.
- 12. Gogolewska, A.B., Strzeszyńska, J., 2019. Factors influencing rock burst hazard in deep copper ore mine, SW Po land. IOP Conf. Ser.: Earth and Environmental Science, 362: 012023. https://doi.org/10.1088/1755-1315/362/1/012023
- 13. Jácome Paz, M.P., Pérez-Zarate, D., Prol-Ledesma, R.M., González Romo, I., Rodríguez, A., 2022. Geochemical exploration in Mesillas geothermal area, Mexico. Applied Geochemistry, 143, 105376. https://doi.org/10.1016/j.apgeochem.2022.105376
- 14. Karnkowski, P., 1999. Oil and Gas Deposits in Poland. Geological Society Geos, Kraków, 38.
- 15. Kijewski, P., Kubiak, J., Gola, S., 2012. Hydrogen sulfide - a new threat in copper ore mining (in Polish with English summary). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 83: 83-95.
- 16. Kłapciński, J., Peryt, T.M., 2007. Budowa geologiczna monokliny przedsudeckiej (in Polish). In: Monografia KGHM Polska Miedź S.A. (ed. A. Piestrzyński): 69-77. KGHM CUPRUM, Wrocław.
- 17. Kłapciński, J., Konstantynowicz, E., Salski, W., Kienig, E., Preidl, M., Dubiński, K., Drozdowski, S., 1984. Atlas obszaru miedzionośnego (monoklina przedsudecka) 1:50 000 (in Polish). Wyd. Śląsk, Katowice.
- 18. Kotarba, M.J., Więcław, W., Stecko, Z., 2000. Composition, origin and habitat of natural gases within Zechstein Main Dolomite strata of the western part of the Fore-Sudetic area, SW Poland (in Polish with English summary). Przegląd Geologiczny, 48: 429-435.
- 19. Kotarba, M.J, Bilkiewicz, E., Manecki, M., Pawlik, W., Ciesielczyk, A., Selerowicz, T., 2017a. Origin and hazards of hydrogen sulphide and high-pressure natural gas in deposits of Polkowice-Sieroszowice and Rudna copper ore mines: preliminary isotopic and mineralogical studies (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 469: 9-34.
- 20. Kotarba, M.J., Bilkiewicz, E., Hałas, S., 2017b. Mechanism of generation of hydrogen sulphide, carbon dioxide and hydrocarbon gases from selected petroleum fields of the Zechstein Main Dolomite carbonates of the western part of Polish Southern Permian Basin: isotopic and geological approach. Journal of Petroleum Science and Engineering, 157: 380-391. https://doi.org/10.1016/j.petrol.2017.07.015
- 21. Kotarba, M.J., Bilkiewicz, E., Kosakowski, P., 2020. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite carbonate reservoir of the western part of the Polish sector of the Southern Permian Basin. Chemical Geology, 554: 119807. https://doi.org/10.1016/j.chemgeo.2020.119807
- 22. Krouse, H.R., Viau, C.A., Eliuk, L.S., Hałas, S., 1988. Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333: 415-419. https://doi.org/10.1038/333415a0
- 23. Liu, M., Deng, Q., Zhao, F., Liu, Y., 2012. Origin of hydrogen sulphide in coal seams in China. Safety Science, 50: 668-673. https://doi.org/10.1016/j.ssci.2011.08.054
- 24. Liu, Q., Jin, Z., Wu, X., Liu, W., Gao, B., Zhang, D., Li, J., Hu, A., 2014. Origin and carbon isotope fractionation of CO2 in marine sour gas reservoirs in the Eastern Sichuan Basin. Organic Geochemistry, 74: 22-32. https://doi.org/10.1016/j.orggeochem.2014.01.012
- 25. Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insight. Sedimentary Geology, 140: 143-175. https://doi.org/10.1016/S0037-0738(00)00176-7
- 26. Machel, H.G., Krouse, H.R., Sassen, R., 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 8: 373-389. https://doi.org/10.1016/0883-2927(95)00008-8
- 27. Markiewicz, A., 2007. Tektonika obszaru złoża (in Polish). In: Monografia KGHM Polska Miedź S.A. (ed. A. Piestrzyński): 115-132. KGHM CUPRUM, Wrocław.
- 28. Markiewicz, A., Banaszak, A., 2005. Dotychczasowe rozpoznanie budowy geologicznej złoża najstarszej soli kamiennej „Kazimierzów” (obszar górniczy Sieroszowice) (in Polish). Górnictwo Odkrywkowe, 47: 15-21.
- 29. Mayrhofer, C., Niessner, R., Baumann, T., 2014. Hydrochemistry and hydrogen sulfide generating processes in the Malm Aquifer, Bavarian Molasse Basin, Germany. Hydrogeology Journal, 22: 151-162. https://doi.org/10.1007/s10040-013-1064-2
- 30. Orr, W.L., 1977. Geologic and geochemical controls on the distribution of hydrogen sulphide in natural gas. In: Advances in Organic Geochemistry (eds. R. Campos and J. Goni): 571-597. Enadimsa, Madrid.
- 31. Peryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J., Smith, K., 2010. Zechstein. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 123-147. EAGE Publications b.v, Houten.
- 32. Polish Committee for Standardization, 1994. Polski Komitet Normalizacyjny, 1994. Jakość wody - oznaczanie chlorków - metoda miareczkowania azotanem srebra w obecności chromianu jako wskaźnika (Metoda Mohra). PN-ISO 9297:1994 (ISO standard no. 9297:1989 [IDT]).
- 33. Polish Committee for Standardization, 1999a. Polski Komitet Normalizacyjny, 1999. Jakość wody - oznaczanie zawartości wapnia - metoda miareczkowa z EDTA. PN-ISO 6058:1999 (ISO standard no. ISO 6058:1984 [IDT]).
- 34. Polish Committee for Standardization, 1999b. Polski Komitet Normalizacyjny, 1999. Woda i ścieki - badania twardości - oznaczanie sumarycznej zawartości wapnia i magnezu w ściekach metodą miareczkową z EDTA oraz obliczanie zawartości magnezu w wodzie i ściekach. PN-C-04554-4:1999.
- 35. Polish Committee for Standardization, 2002. Polski Komitet Normalizacyjny, 2002. Jakość wody - oznaczanie siarczanów(VI) - metoda grawimetryczna z chlorkiem baru. PN-ISO 9280:2002. (ISO standard no. ISO 9280:1990 [IDT]).
- 36. Polish Committee for Standardization, 2010. Polski Komitet Normalizacyjny, 2010. Charakteryzowanie odpadów – oznaczanie całkowitej substancji rozpuszczonej (TDS) w wodzie i eluatach. PN-EN 15216:2010.
- 37. Polish Committee for Standardization, 2012. Polski Komitet Normalizacyjny, 2012. Jakość wody - oznaczanie pH. PN-EN ISO 10523:2012. (ISO standard nos. 10523:2012 [IDT], ISO 10523:2008 [IDT]).
- 38. Speczik, S., Oszczepalski, S., Nowak, G., Karwasiecka, M., 2007. Kupferschiefer - a hunt for new reserves (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 423: 173-188.
- 39. Sulin, W.A., 1948. Hydrogeology of Oil and Gas Accumulations (in Russian). Publ., Moscow.
- 40. Szczerbowski, Z., 2019. High-energy seismic events in Legnica-Głogów Copper District in light of ASG-EUPOS data. Reports on Geodesy and Geoinformatics, 107: 25-40. https://doi.org/10.2478/rgg-2019-0004
- 41. Tan, B., Shao, Z., Wei, H., Yang, G., Zhu, X., Xu, B., Zhang, F., 2020. Status of research on hydrogen sulphide gas in Chinese mines. Environmental Science and Pollution Research, 27: 2502-2521. https://doi.org/10.1007/s11356-019-07058-x
- 42. Torghabeh, A.K., Kalantariasl, A., Kamali, M., Akbarifard, M.G., 2021. Reservoir gas isotope fingerprinting and mechanism for increased H2S: an example from Middle East Shanul Gas Field. Journal of Petroleum Science and Engineering, 199: 108325. https://doi.org/10.1016/j.petrol.2020.108325
- 43. Wagner, R., 1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 146: 1-71.
- 44. Wagner, R., Peryt, T.M., 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. Geological Quarterly, 41: 457-474.
- 45. Worden, R.H., Smalley, P.C., 1996. H2S-producing reactions in deep carbonate gas reservoirs: Kuff Formation, Abu Dhabi. Chemical Geology, 133: 157-171. https://doi.org/10.1016/S0009-2541(96)00074-5
- 46. Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995. Gas souring by thermochemical sulfate reduction at 140°C. AAPG Bulletin, 79: 854-863. https://doi.org/10.1306/8D2B1BCE-171E-11D7-8645000102C1865D
- 47. Xie, W., Wang, H., Wang, M., He, Y., 2021. Genesis, controls and risk prediction of H2S in coal mine gas. Scientific Reports, 11: 5712. https://doi.org/10.1038/s41598-021-85263-w
- 48. Zhang, T., Amrani, A., Ellis, G., Ma, Q., Tang, Y., 2008. Experimental investigation on thermochemical sulfate reduction by H2S initiation. Geochimica et Cosmochimica Acta, 72: 3518-3530. https://doi.org/10.1016/j.gca.2008.04.036
- 49. Zhu, G., Zhang, S., Liang, Y., Dai, J., Li, J., 2005. Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, southwestern China. Science in China, Ser. D Earth Sciences, 48: 1960-1971. https://doi.org/10.1360/082004-147
- 50. Żelaźniewicz, A., Aleksandrowski, P., 2008. Tectonic subdivision of Poland: southwestern Poland (in Polish with English summary). Przegląd Geologiczny, 56: 904-911.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d95f722-9817-49bb-9950-d5d2b92a1cff