PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Homogeneous regionalization via L-moments for Mumbai City, India

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study identified homogeneous rainfall regions using a combination of cluster analysis and the L-moments approach. The L-moments of heavy rainfall events of various durations (0.25, 1, 6, 12, 24, 48, 72, 96, and 120 h) were analysed using seasonal (June-September) rainfall measurements at 47 meteorological stations over the period 2006- 2016. In the primary phase of this study, the homogeneity of Mumbai as a single region was examined by statistical testing (based on L-moment ratios and variations of the L-moments). The K-means clustering approach was applied to the site characteristics to identify candidate regions. Based on the most appropriate distribution, these regions were subsequently tested using at-site statistics to form the final homogeneous regions. For durations above 1h, the regionalisation procedure delineated six clusters of similarly behaved rain gauges, where each cluster represented one separate class of variables for the rain gauges. However, for durations below 1h, the regionalisation procedure was not efficient in the sense of identifying homogeneous regions for rainfall. Furthermore, the final clusters confirmed that the spatial variation of rainfall was related to the complex topography, which comprised flatlands (below or at mean sea level), urban areas with high rise buildings, and mountainous and hilly areas.
Twórcy
  • Indian Institute of Technology (IIT), Centre of Studies in Resources Engineering, Bombay 400076, India
  • Indian Institute of Technology (IIT), Centre of Studies in Resources Engineering, Bombay 400076, India
Bibliografia
  • Ahuja S., Dhanya C.T., 2012, Regionalization of rainfall using RCDA cluster ensemble algorithm in India, Journal of Software Engineering and Applications, 5 (8), 568-573, DOI: 10.4236/jsea.2012.58065.
  • Bharath R., Srinivas V.V., 2015, Regionalization of extreme rainfall in India, International Journal of Climatology, 35 (6), 1142-1156, DOI: 10.1002/joc.4044.
  • Carvalho J.R.P. de, Nakai A.M., Monteiro J.E.B.A., 2016, Spatiotemporal modeling of data imputation for daily rainfall series in homogeneous zones, Revista Brasileira de Meteorologia, 31 (2), 196-201, DOI: 10.1590/0102-778631220150025.
  • Castellarin A., Burn D.H., Brath A., 2008, Homogeneity testing: how homogeneous do heterogeneous cross-correlated regions seem?, Journal of Hydrology, 360 (1-4), 67-76, DOI: 10.1016/j.jhydrol.2008.07.014.
  • Clarke R., 2010, On the (mis)use of statistical methods in hydroclimatological research, Hydrological Sciences Journal, 55 (2), 139-144, DOI: 10.1080/02626661003616819.
  • Dullo T.T., Kalyanapu A.J., Teegavarapu S.V., 2017, Evaluation of changing characteristics of temporal rainfall distribution within 24-hour duration storms and their influences on peak discharges: case study of Asheville, North Carolina, Journal of Hydrologic Engineering, 22 (11), DOI: 10.1061/(ASCE) HE.1943-5584.0001575.
  • Dunn J.C., 1973, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics, 3 (3), 32-57, DOI: 10.1080/01969727308546046.
  • Estévez J., Gavilán P., García-Marín A.P., Zardi D., 2015, Detection of spurious precipitation signals from automatic weather stations in irrigated areas, International Journal of Climatology, 35 (7), 1556-1568, DOI: 10.1002/joc.4076.
  • Gaál L., Kyselý J., Szolgay J., 2008, Region-of-influence approach to a frequency analysis of heavy precipitation in Slovakia, Hydrology and Earth System Sciences, 12 (3), 825-839, DOI: 10.5194/hess-12-825-2008.
  • Gaál L., Szolgay J., Lapin M., Faško P., 2009, Hybrid approach to the delineation of homogeneous regions for regional precipitation frequency analysis, Journal of Hydrology and Hydromechanics, 57 (4), 226-249, DOI: 10.2478/v10098- 009-0021-1.
  • Genolini C., Ecochard R., Benghezal M., Driss T., Andrieu S., Subtil F., 2016, kmlShape: An efficient method to cluster Longitudinal data (time-series) according to their shapes, PLOS One, 11 (6), DOI: 10.1371/journal.pone.0150738.
  • Hailegeorgis T.T., Alfredsen K., 2017, Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway, Journal of Hydrology: Regional Studies, 9, 104-126, DOI: 10.1016/j.ejrh.2016.11.004.
  • Halbert K., Nguyen C.C., Payrastre O., Gaume E., 2016, Reducing uncertainty in flood frequency analyses: a comparison of local and regional approaches involving information on extreme historical floods, Journal of Hydrology, 541 (Part A), 90-98, DOI: 10.1016/j.jhydrol.2016.01.017.
  • Hallegatte S., 2010, Flood risks, climate change impacts and adaptation benefits in Mumbai. An initial assessment of socioeconomic consequences of present and climate change induced flood risks and of possible adaptation options, OECD Environment Working, Papers, 27, DOI: 10.1787/5km4hv6wb434-en.
  • Handl J., Knowles J., Kell D.B., 2005, Computational cluster validation in post-genomic data analysis, Bioinformatics, 21 (15), 3201-3012, DOI: 10.1093/bioinformatics/bti517.
  • Hessburg P.F., Kuhlman E.E., Swetnam T.W., 2005, Examining the recent climate through the lens of ecology: inferences from temporal pattern analysis, Ecological Applications, 15 (2), 440-457.
  • Hosking J.R.M., Wallis J.R., 1993, Some statistic useful in region frequency analysis, Water Resources Research, 29 (2), 271- 281, DOI: 10.1029/92WR01980.
  • Hosking J.R.M., Wallis J.R., 1997, Regional frequency analysis: an approach based on L-moments, Cambridge University Press, Cambridge, UK, 224 pp.
  • Ilorme F., Griffis V.W., 2013, A novel procedure for delineation of hydrologically homogeneous regions and the classification of ungauged sites for design flood estimation, Journal of Hydrology, 492, 151-162, DOI: 10.1016/j.jhydrol.2013.03.045.
  • Kakade S.B., Kulkarni A., 2017, Seasonal prediction of summer monsoon rainfall over cluster regions of India, Journal of Earth System Science, 126 (34), DOI: 10.1007/s12040- 017-0811-5.
  • Kar K.K., Yang S.-K., Lee J.-H., Khadim F.K., 2017, Regional frequency analysis for consecutive hour rainfall using L-moments approach in Jeju Island, Korea, Geoenvironmental Disasters, 4 (18), DOI: 10.1186/s40677-017-0082-0.
  • Khan S.A., Hussain I., Hussain T., Faisal M., Muhammad Y.S., Shoukry A.M., 2017, Regional frequency analysis of extremes precipitation using L-moments and partial L-Moments, Advances in Meteorology, DOI: 10.1155/2017/6954902.
  • Liu J., Doan C.D., Liong S.-Y., Sanders R., Dao A.T., Fewtrell T., 2015, Regional frequency analysis of extreme rainfall events in Jakarta, Natural Hazards, 75 (2), 1075-1104, DOI: 10.1007/s11069-014-1363-5.
  • Lokanadham B., Gupta K., Nikam V., 2012, Characterization of spatial and temporal distribution of monsoon rainfall over Mumbai, ISH Journal of Hydraulic Engineering, 15 (2), 69-80, DOI: 10.1080/09715010.2009.10514941.
  • MacQueen J.B., 1967, Some methods for classification and analysis of multivariate observations, [in:] Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 1: Statistics, L.M. Le Cam, J. Neyman (eds.), University of California Press, Berkeley, 281-297.
  • Malekinezhad H., Zare-Garizi A., 2014, Regional frequency analysis of daily rainfall extremes using L-moments approach, Atmósfera, 27 (4), 411-427, DOI: 10.1016/S0187- 6236(14)70039-6.
  • Nair A., Mohanty U.C., Acharya N., 2013, Monthly prediction of rainfall over India and its homogeneous zones during monsoon season: a supervised principal component regression approach on general circulation model products, Theoretical and Applied Climatology, 111 (1-2), 327-339, DOI: 10.1007/ s00704-012-0660-8.
  • Ngongondo C.S., Xu C.Y., Tallaksen L.M., Alemaw B., Chirwa T., 2011, Regional frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-moments approaches, Stochastic Environmental Research and Risk Assessment, 25 (7), 939-955, DOI: 10.1007/s00477-011-0480-x.
  • Núñez J.H., Hallack- Alegría M., Cadena M., 2016, Resolving regional frequency analysis of precipitation at large and complex scales using a bottom-up approach: The Latin America and the Caribbean Drought Atlas, Journal of Hydrology, 538, 515-538, DOI: 10.1016/j.jhydrol.2016.04.025.
  • Núñez J.H., Verbist K., Wallis J.R., Schaefer M.G., Morales L., Cornelis W.M., 2011, Regional frequency analysis for mapping drought events in north-central Chile, Journal of Hydrology, 405 (3-4), 352-366, DOI: 10.1016/j.jhydrol.2011.05.035.
  • Parchure A.S., Gedam S.K., 2018, Precipitation regionalization using Self-Organizing Maps for Mumbai City, India, Journal of Water Resource and Protection, 10 (9), 939-956, DOI: 10.4236/jwarp.2018.109055.
  • Paul S., Ghosh S., Mathew M., Devanand A., Karmakar S., Niyogi D., 2018, Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization, Scientific Reports, 8 (3918), DOI: 10.1038/s41598-018-22322-9.
  • Pham V.H., Lee B.R., 2015, An image segmentation approach for fruit defect detection using k-means clustering and graphbased algorithm, Vietnam Journal of Computer Science, 2 (1), 25-33, DOI: 10.1007/s40595-014-0028-3.
  • Rahman M., Sarkar S., Najafi M.R., Rai R.K., 2013, Regional extreme rainfall mapping for Bangladesh using L-moment technique, Journal of Hydrologic Engineering, 18 (5), DOI: 10.1061/(ASCE)HE.1943-5584.0000663.
  • Rao A.R., Srinivas V.V., 2008, Regionalization of watersheds. An approach based on cluster analysis, Water Science and Technology Library Series, 58, Springer Netherlands, 245 pp.
  • Requena A.I., Chebana F., Mediero L., 2016, A complete procedure for multivariate index-flood model application, Journal of Hydrology, 535, 559-580, DOI: 10.1016/j.jhydrol.2016.02.004.
  • Rousseeuw P.J., 1987, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53-65, DOI: 10.1016/0377-0427(87)90125-7.
  • Saha M., Mitra P., Nanjundiah R.S., 2017, Deep learning for predicting the monsoon over the homogeneous region of India, Journal of Earth System Science, 126 (54), DOI: 10.1007/s12040-017-0838-7.
  • Santos E.B., Lucio P.S., Silva C.M.S., 2015, Precipitation regionalization of the Brazilian Amazon, Atmospheric Science Letters, 16 (3), 185-192, DOI: 10.1002/asl2.535.
  • Sen S., Vittal H., Singh T., Singh J., Karmakar S., 2013, At-site design rainfall estimation with a diagnostic check for nonstationary: an application to Mumbai rainfall datasets, [in:] Proceedings of HYDRO 2013 INTERNATIONAL, 4-6 December 2013, Madras, India, 14 pp.
  • Sherly M.A., Karmakar S., Chan T., Rau C., 2015, Design rainfall framework using multivariate parametric-nonparametric Approach, Journal of Hydrologic Engineering, 21 (1), DOI: 10.1061/(ASCE)HE.1943-5584.0001256.
  • Singh J., Sekharan S., Karmarkar S., Ghosh S., Zope P.E., Eldho T.I., 2017, Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: is statistical forecasting futile?, Journal of Earth System Science, 126 (38), DOI: 10.1007/ s12040-017-0817-z.
  • Sinha P., Mohanty U.C., Kar S.C., Dash S.K., Robertson A.W., Tippett M.K., 2013, Seasonal prediction of the Indian summer monsoon rainfall using canonical correlation analysis of the NCMRWF global model products, International Journal of Climatology, 33 (7), 1601-1614, DOI: 10.1002/joc.3536.
  • Smithers J.C., Schulze R.E., 2001, A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments, Journal of Hydrology, 241 (1-2), 42-52, DOI: 10.1016/S0022-1694(00)00374-7.
  • Sun X., Lall U., Merz B., Nguyen V.D., 2015, Hierarchical Bayesian clustering for nonstationary flood frequency analysis: application to trends of annual maximum flow in Germany, Water Resources Research, 51 (8), 6586-6601, DOI: 10.1002/2015WR017117.
  • Wallis J.R., Schaefer M.G., Barker B.L., Taylor G.H., 2007, Regional precipitation-frequency analysis and spatial mapping for 24-hour and 2-hour durations for Washington States, Hydrology and Earth System Sciences, 11 (1), 415-442, DOI: 10.5194/hess-11-415-2007.
  • Wazneh H., Chebana F., Ouarda T.B.M.J., 2015, Delineation of homogeneous region for regional frequency analysis using statistical depth function, Journal of Hydrology, 521, 232-244, DOI: 10.1016/j.hydrol.2014.11.068.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d8e874c-ae7e-413f-b49e-19c925148b09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.