PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The assessment of temperature amplitude arising during the implant bed formation in relation to variable preparation parameters – in vitro study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this study was to analyse the temperatures generated during the bone bed preparation, given the internal structure of the bone bed, the geometry of the hole, and the treatment parameters such as the type of cooling and the rotational speed of the drill. The investigated material was domestic pig ribs, in which holes were drilled three times using two drill bit systems used for Hiossen® and Paltop® dental implantation. The ThermaCAM® P640 thermal imaging camera was used for measurement of drilling temperatures. After the holes were drilled, each rib was examined using the 1172 SkyScan microtomograph, Bruker®, to compare the geometry of the machined holes. The presented study proved that larger diameter drill bits (Hiossen® drill bits) generate more heat during the machining process, as evidenced by higher temperatures obtained for the Hiossen system in each case. It was proved that rotational speed, drill bit diameter and cooling system have a significant effect on the amount of heat generated during bone tissue preparation. The density and type of bone tissue in which the hole is prepared are significant factors affecting the amount of heat generated.
Rocznik
Strony
163--173
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Wrocław, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Department of Pediatric Dentistry and Preclinical Dentistry, Wrocław Medical University, Wrocław, Poland
Bibliografia
  • [1] ALWAN A., The effect of heat on osseointegration in two steps dental implant, EJPMR, 2017, 4 (6), 126–127.
  • [2] AUGUSTIN G., DAVILA S., MIHOCI K., UDILJAK T., VEDRINA D.S., ANTABAK A., Thermal osteonecrosis and bone drilling parameters revisited, Arch. Orthop. Trauma Surg., 2008, 128, 71–77.
  • [3] BENINGTON I.C., BIAGIONI P.A., BRIGGS J., SHERIDAN S., LAMEY P.J., Thermal changes observed at implant sites during internal and external irrigation, Clin. Oral Implants Res., 2002, 13, 293–297.
  • [4] BRISMAN D.L., The effect of speed, pressure, and time on bone temperature during the drilling of implant sites, Int. J. Oral Maxillofac. Implants, 1996, 11, 35–37.
  • [5] CHACON G.E., BOWER D.L., LARSEN P.E., MCGLUMPHY E.A., BECK F.M., Heat production by 3 implant drill systems after repeated drilling and sterilization, J. Oral Maxillofac. Surg., 2006, 64 (2), 265–269.
  • [6] CARVALHO A.C., QUEIROZ T.P., OKAMOTO R., MARGONAR R., GARCIA I.R., JR, MAGRO FILHO O., Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias, Int. J. Oral Maxillofac. Implants, 2011, 26, 1193–1201.
  • [7] ERIKSSON R.A., ALBREKTSSON T., MAGNUSSON B., Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit, Scand. J. Plast. Reconstr. Surg., 1984, 18, 261–268.
  • [8] ERIKSSON A., ALBREKTSSON T., GRANE B., MCQUEEN D., Thermal injury to bone. A vital-microscopic description of heat effects, Int. J. Oral Surg., 1982, 11, 115–121.
  • [9] FEINE J.S., CARLSSON G.E., AWAD M.A., CHEHADE A., DUNCAN W.J., GIZANI S., HEAD T., HEYDECKE G., LUND J.P., MACENTEE M., MERICSKE-STERN R., MOJON P., MORAIS J.A., NAERT I., PAYNE A.G.T., PENROD J., STOKER G.T., TAWSE--SMITH A., TAYLOR T.D., THOMASON J.M., THOMSON W.M., WISMEIJER D., The McGill consensus statement on overdentures. Mandibular two-implant overdentures as first choice standard of care for edentulous patients, Montreal, Quebec, Int. J. Oral Maxillofac. Implants, 2002, 17 (4), 601–602.
  • [10] FLANAGAN D., Osteotomy irrigation: Is it necessary?, Implant Dent., 2010, 19, 241–249.
  • [11] GIL J.J., DÍAZ I., ACCINI F., Inferring Material Properties in Robotic Bone Drilling Processes, Acta Bioeng. Biomech., 2019, 21 (3), 109–111.
  • [12] GŁOWACKI J., TOMANIK M., PEZOWICZ C., KRAUSS H., Mechanical and histomorphometrical evaluation of false and floating ribs of young adults with idiopathic scoliosis, Acta Bioeng. Biomech., 2020, 22 (2), 3–10.
  • [13] IHDE S., PAŁKA Ł., JANECZEK M., KOSIOR P., KIRYK J., DOBRZYŃSKI M., Bite Reconstruction in the Aesthetic Zone Using One-Piece Bicortical Screw Implants, Case Rep. Dent., 2018, 29, 4671482.
  • [14] JASTRZĘBSKI D., PERZ R., Rib kinematics analysis in oblique and lateral impact tests, Acta Bioeng. Biomech., 2020, 22 (1), 1–9.
  • [15] KALIDINDI V., Optimization of Drill Design and Coolant Systems during Dental Implant Surgery, Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2004.
  • [16] KIM S.J., YOO J., KIM Y.S., SHIN S.W., Temperature change in pig rib bone during implant site preparation by low-speed drilling, J. Oral Maxillofac. Surg., 2010, 5, 522–527.
  • [17] KIRSTEIN K., HOROCHOWSKA M., JAGIEŁŁO J., BUBAK J., CHRÓSZCZ A., KUROPKA P., DOBRZYŃSKI M., PORADOWSKI D., MICHAŁEK M., BORAWSKI W., JANECZEK M., Dental Implant Site Drilling and Induced Morphological Changes Correlated with Temperature in Pig’s Rib Used as the Human Jaw Model, Appl. Sci., 2021, 11, 2493, 1–11.
  • [18] KIRSTEIN K., DOBRZYNSKI M., KOSIOR P., CHRÓSZCZ A., DUDEK K., FITA K., PARULSKA O., RYBAK Z., SKALEC A., SZKLARZ SZ., JANECZEK M., Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems, BioMed Research International, 2016, Article ID 1879468, DOI: 10.1155/2016/1879468.
  • [19] MARKOVIC A., MIŠIĆ T., MILICIC B., CALVO-GUIRADO J.L., ALEKSIĆ Z., ÐINIĆ A., Heat generation during implant placement in low-density bone: Effect of surgical technique, insertion torque and implant macro design, Clin. Oral Implants Res., 2013, 24, 798–805.
  • [20] MERCAN U., SUMER M., KAYA O.A., KESKINER I., MERAL D.G., ERDOGAN O., An In-vitro study on thermal changes during implant drilling with different irrigation volumes, Niger J. Clin. Pract., 2019, 22, 350–354.
  • [21] NAM O., YU W., CHOI M.Y., KYUNG H.M., Monitoring of bone temperature during osseous preparation for orthodontic micro-screw implants: Effect of motor speed and pressure, Key Eng. Mater, 2006, 321–322, 1044–1047.
  • [22] OH H.J., WIKESJO U.M., KANG H.S., KU Y., EOM T.G., KOO K.T., Effect of implant drill characteristics on heat generation in osteotomy sites: a pilot study, Clin. Oral Implants Res., 2011, 22, 722–726.
  • [23] SCARANO A., PIATTELLI A., ASSENZA B.,CARINCI F., DI DONATO L., ROMANI G.L., MERLA A., Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills, Clin. Implant Dent. Relat. Res., 2011, 13, 319–323.
  • [24] SHARAWY M., MISCH C.E., WELLER N., TEHEMAR S., Heat Generation during Implant Drilling: The Significance of Motor Speed, J. Oral Maxillofac. Surg., 2002, 60, 1160–1169.
  • [25] SENER B.C., DERGIN G., GURSOY B., KELESOGLU E., SLIH I., Effects of irrigation temperature on heat control in vitro at different drilling depths, Clin. Oral Implants Res., 2009, 20, 294–298.
  • [26] SUMER M., MISIR A.F., TELCIOGLU N.T., GULER A.U., YENISEY M., Comparison of heat generation during implant drilling using stainless steel and ceramic drills, J. Oral Maxillofac. Surg., 2011, 69, 1350–1354.
  • [27] TRISI P., BERARDINI M., FALCO A., VULPIANI M.P., Effect of Temperature on the Dental Implant Osseointegration Development in Low-Density Bone: An In Vivo Histological Evaluation, Implant Dent., 2015, 24 (1), 96–100.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d8e3d86-32c9-49fd-a02b-4195ebfaf796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.