PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on utilizing the marine biorefinery waste in construction raw materials to reduce land pollution and enhance green environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research mainly concentrates on eco-friendly construction material. Production of cement and concrete industries release huge amount of carbon dioxide (CO₂) and greenhouse gases which affect the environment and also there is a demand in construction material by man-made or nature. The construction sector finds an economic and eco-friendly cement replacement material to achieve the demand for green concrete that improve the energy conservation and better energy saving material. In marine Bio-refinery waste produce huge quantity of calcium carbonate, whose disposal is cause of major concern. Pre-eminent solution for this problem is utilizing the marine shell waste in cement and concrete. It revises the manufacturing process to reduce the raw material usage in production and adoptable material for global warming. Therefore, the researchers focus on marine waste sea shells as the replacement material in construction industry to save the energy and also give sustainable green material. As per the previous studies by the researchers to determine the chemical composition, specific gravity, water absorption, particle size distribution of seashells and also compressive, flexural and tensile strength of concrete. It shows the seashell is filler material that slightly increases the strength when compared to the conventional materials and therefore the sea shells are suitable for the construction field to manufacture the cement and concrete with eco-friendly manner.
Rocznik
Strony
43--62
Opis fizyczny
Bibliogr. 66 poz., il., fot., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, SRM IST, Kattankulathur, Chennai, India
  • Department of Civil Engineering, SRM IST, Kattankulathur, Chennai, India
  • Department of Mechanical Engineering, SRM IST, Kattankulathur, Chennai, India
  • School of Architecture and Planning, Anna University, Chennai, India
Bibliografia
  • 1. B. Safi, M. Saidi, A. Daoui, A. Bellal, A. Mechekak, and K. Toumi, “The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM),” Constr. Build. Mater., vol. 78, pp. 430–438, 2015, doi: 10.1016/j.conbuildmat.2015.01.009.
  • 2. W. A. S. Bin Wan Mohammad, N. H. Othman, M. H. Wan Ibrahim, M. A. Rahim, S. Shahidan, and R. A. Rahman, “A review on seashells ash as partial cement replacement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 271, no. 1, pp. 1–8, 2017, doi: 10.1088/1757-899X/271/1/012059.
  • 3. P. Ballester, I. Mármol, J. Morales, and L. Sánchez, “Use of limestone obtained from waste of the mussel cannery industry for the production of mortars,” Cem. Concr. Res., vol. 37, no. 4, pp. 559–564, 2007, doi: 10.1016/j.cemconres.2007.01.004.
  • 4. B. Peceño, C. Arenas, B. Alonso-Fariñas, and C. Leiva, “Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete,” J. Mater. Civ. Eng., vol. 31, no. 6, p. 04019077, 2019, doi: 10.1061/(asce)mt.1943-5533.0002719.
  • 5. G. L. Yoon, B. T. Kim, B. O. Kim, and S. H. Han, “Chemical-mechanical characteristics of crushed oyster-shell,” Waste Manag., vol. 23, no. 9, pp. 825–834, 2003, doi: 10.1016/S0956-053X(02)00159-9.
  • 6. K. N. R. F. C. Venkata Sai Nagendra, C. Venkata Siva Rama Prasad, “An Experimental Investigation On Properties Of Concrete By Partial Replacement Of Cement With Dolomite And Sand With Crushed Sea Shell,” Int. J. Sci. Technol. Res. Vol. 8, ISSUE 10, Oct. 2019 ISSN 2277-8616, vol. 43, no. July, pp. 1325–1330, 2020, doi: 10.1016/j.matpr.2020.09.164.
  • 7. E. Gartner and H. Hirao, “A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete,” Cem. Concr. Res., vol. 78, pp. 126–142, 2015, doi: 10.1016/j.cemconres.2015.04.012.
  • 8. F. Soltanzadeh, M. Emam-Jomeh, A. Edalat-Behbahani, and Z. Soltan-Zadeh, “Development and characterization of blended cements containing seashell powder,” Constr. Build. Mater., vol. 161, pp. 292–304, 2018, doi: 10.1016/j.conbuildmat.2017.11.111.
  • 9. G. K. M. Subramanian, M. Balasubramanian, and A. A. Jeya Kumar, “A Review on the Mechanical Properties of Natural Fiber Reinforced Compressed Earth Blocks,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–15, 2021, doi: 10.1080/15440478.2021.1958405.
  • 10. C. Rahul Rollakanti, C. Venkata Siva Rama Prasad, K. K. Poloju, N. M. Juma Al Muharbi, and Y. Venkat Arun, “An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder,” Mater. Today Proc., vol. 43, no. April, pp. 1325–1330, 2020, doi: 10.1016/j.matpr.2020.09.164.
  • 11. F. C. Lo, S. L. Lo, and M. G. Lee, “Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality,” Environ. Sci. Pollut. Res., vol. 27, no. 19, pp. 23742–23760, 2020, doi: 10.1007/s11356-020-08796-z.
  • 12. N. Mikanovic, K. Khayat, M. Pagé, and C. Jolicoeur, “Aqueous CaCO3 dispersions as reference systems for early-age cementitious materials,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 291, no. 1–3, pp. 202–211, 2006, doi: 10.1016/j.colsurfa.2006.06.042.
  • 13. Y. M. H. Mustafa, O. S. B. Al-Amoudi, S. Ahmad, M. Maslehuddin, and M. H. Al-Malack, “Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil,” Environ. Sci. Pollut. Res., vol. 28, no. 3, pp. 3196–3216, 2021, doi: 10.1007/s11356-020-10590-w.
  • 14. D. Chen, P. Zhang, T. Pan, Y. Liao, and H. Zhao, “Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials,” J. Clean. Prod., vol. 237, p. 117811, 2019, doi: 10.1016/j.jclepro.2019.117811.
  • 15. T. Sato and F. Diallo, “Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate,” Transp. Res. Rec., no. 2141, pp. 61–67, 2010, doi: 10.3141/2141-11.
  • 16. C. H. Tsou et al., “Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder,” Polymer (Guildf)., vol. 160, pp. 265–271, 2019, doi: 10.1016/j.polymer.2018.11.048.
  • 17. T. H. Silva, J. Mesquita-Guimarães, B. Henriques, F. S. Silva, and M. C. Fredel, “The potential use of oyster shell waste in new value-added by-product,” Resources, vol. 8, no. 1, pp. 1–15, 2019, doi: 10.3390/resources8010013.
  • 18. M. Huang, H. Feng, N. Li, D. Shen, Y. Zhou, and Y. Jia, “Addition of large amount of municipal sewage sludge as raw material in cement clinker production,” Environ. Sci. Pollut. Res., vol. 24, no. 36, pp. 27862–27869, 2017, doi: 10.1007/s11356-017-9949-6.
  • 19. A. Edalat-Behbahani, F. Soltanzadeh, M. Emam-Jomeh, and Z. Soltan-Zadeh, “Sustainable approaches for developing concrete and mortar using waste seashell,” Eur. J. Environ. Civ. Eng., vol. 25, no. 10, pp. 1874–1893, 2021, doi: 10.1080/19648189.2019.1607780.
  • 20. A. Ahmed, S. Guo, Z. Zhang, C. Shi, and D. Zhu, “A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete,” Constr. Build. Mater., vol. 256, p. 119484, 2020, doi: 10.1016/j.conbuildmat.2020.119484.
  • 21. G. Del, Á. El, T. Lagunillas, F. Valeriano, E. Algodón, and F. L. A. Totora, “Study of compressive strength characteristics of coral aggregate concrete,” no. 270, p. 2305, 2013.
  • 22. S. Motamedi, S. Shamshirband, R. Hashim, D. Petković, and C. Roy, “Estimating unconfined compressive strength of cockle shell-cement-sand mixtures using soft computing methodologies,” Eng. Struct., vol. 98, pp. 49–58, 2015, doi: 10.1016/j.engstruct.2015.03.070.
  • 23. T. A. Dang, S. Kamali-Bernard, and W. A. Prince, “Design of new blended cement based on marine dredged sediment,” Constr. Build. Mater., vol. 41, pp. 602–611, 2013, doi: 10.1016/j.conbuildmat.2012.11.088.
  • 24. Q. Wang, P. Li, Y. Tian, W. Chen, and C. Su, “Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 31, no. 5, pp. 996–1001, 2016, doi: 10.1007/s11595-016-1481-x.
  • 25. J. M. Gao, C. X. Qian, H. F. Liu, B. Wang, and L. Li, “ITZ microstructure of concrete containing GGBS,” Cem. Concr. Res., vol. 35, no. 7, pp. 1299–1304, 2005, doi: 10.1016/j.cemconres.2004.06.042.
  • 26. D. H. K. Prasad and C. V. S. R. Prasad, “Review Paper on the Effect of Microbiologically induced CaCO 3 Precipitation on Self healing Method of Concrete : Bacterial concrete,” vol. 5, no. Xii, pp. 1045–1049, 2017.
  • 27. D. Wang, H. Wang, S. Larsson, M. Benzerzour, W. Maherzi, and M. Amar, “Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite,” Constr. Build. Mater., vol. 241, p. 118085, 2020, doi: 10.1016/j.conbuildmat.2020.118085.
  • 28. S. Cheng, Z. Shui, T. Sun, R. Yu, G. Zhang, and S. Ding, “Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete,” Appl. Clay Sci., vol. 141, pp. 111–117, 2017, doi: 10.1016/j.clay.2017.02.026.
  • 29. W. Kurdowski, “The protective layer and decalcification of C-S-H in the mechanism of chloride corrosion of cement paste,” Cem. Concr. Res., vol. 34, no. 9, pp. 1555–1559, 2004, doi: 10.1016/j.cemconres.2004.03.023.
  • 30. G. Rajasekaran, “Sulphate attack and ettringite formation in the lime and cement stabilized marine clays,” Ocean Eng., vol. 32, no. 8–9, pp. 1133–1159, 2005, doi: 10.1016/j.oceaneng.2004.08.012.
  • 31. F. Martirena and J. Monzó, “Vegetable ashes as Supplementary Cementitious Materials,” Cem. Concr. Res., vol. 114, no. November 2016, pp. 57–64, 2018, doi: 10.1016/j.cemconres.2017.08.015.
  • 32. E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.
  • 33. D. Wang, Q. Zhao, C. Yang, Y. Chi, W. Qi, and Z. Teng, “Study on frost resistance and vegetation performance of seashell waste pervious concrete in cold area,” Constr. Build. Mater., vol. 265, p. 120758, 2020, doi: 10.1016/j.conbuildmat.2020.120758.
  • 34. A. Naqi, S. Siddique, H. K. Kim, and J. G. Jang, “Examining the potential of calcined oyster shell waste as additive in high volume slag cement,” Constr. Build. Mater., vol. 230, p. 116973, 2020, doi: 10.1016/j.conbuildmat.2019.116973.
  • 35. J. H. Seo, S. M. Park, B. J. Yang, and J. G. Jang, “Calcined oyster shell powder as an expansive additive in cement mortar,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081322.
  • 36. R. K. Etim, I. C. Attah, and P. Yohanna, “Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction,” Int. J. Pavement Res. Technol., vol. 13, no. 4, pp. 341–351, 2020, doi: 10.1007/s42947-020-0290-y.
  • 37. F. Marin, N. Le Roy, and B. Marie, “2. MOLLUSK SHELL 2.1. Introduction,” pp. 1099–1125, 2012.
  • 38. K. C. Panda, S. Behera, and S. Jena, “Effect of rice husk ash on mechanical properties of concrete containing crushed seashell as fine aggregate,” Mater. Today Proc., vol. 32, no. 4, pp. 838–843, 2020, doi: 10.1016/j.matpr.2020.04.049.
  • 39. C. Martínez-García, B. González-Fonteboa, F. Martínez-Abella, and D. Carro- López, “Performance of mussel shell as aggregate in plain concrete,” Constr. Build. Mater., vol. 139, pp. 570–583, 2017, doi: 10.1016/j.conbuildmat.2016.09.091.
  • 40. H. Cuadrado-Rica, N. Sebaibi, M. Boutouil, and B. Boudart, “Properties of ordinary concretes incorporating crushed queen scallop shells,” Mater. Struct. Constr., vol. 49, no. 5, pp. 1805–1816, 2016, doi: 10.1617/s11527-015-0613-7.
  • 41. J. Burt, A. Bartholomew, A. Bauman, A. Saif, and P. F. Sale, “Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters,” J. Exp. Mar. Bio. Ecol., vol. 373, no. 1, pp. 72–78, 2009, doi: 10.1016/j.jembe.2009.03.009.
  • 42. B. A. Tayeh, M. W. Hasaniyah, A. M. Zeyad, and M. O. Yusuf, “Properties of concrete containing recycled seashells as cement partial replacement: A review,” J. Clean. Prod., vol. 237, p. 117723, 2019, doi: 10.1016/j.jclepro.2019.117723.
  • 43. Mahdi Majedi-Asl and Robabeh Jafari, “The Mathematical Modeling of Self-Purification of the Zarjoob River for Justification of Emission,” J. Environ. Sci. Eng., vol. 1, no. 1, 2012.
  • 44. C. Arenas, C. Leiva, L. F. Vilches, and H. Cifuentes, “Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers,” Waste Manag., vol. 33, no. 11, pp. 2316–2321, 2013, doi: 10.1016/j.wasman.2013.07.008.
  • 45. K. H. Mo, U. J. Alengaram, M. Z. Jumaat, S. C. Lee, W. I. Goh, and C. W. Yuen, “Recycling of seashell waste in concrete: A review,” Constr. Build. Mater., vol. 162, no. February, pp. 751–764, 2018, doi: 10.1016/j.conbuildmat.2017.12.009.
  • 46. A. Abdelouahed, H. Hebhoub, L. Kherraf, and M. Belachia, “Effect of Cockele Shells on Mortars Performance in Extreme Conditions,” Civ. Environ. Eng. Reports, vol. 29, no. 2, pp. 60–73, 2019, doi: 10.2478/ceer-2019-0017.
  • 47. E. I. Yang, S. T. Yi, and Y. M. Leem, “Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties,” Cem. Concr. Res., vol. 35, no. 11, pp. 2175–2182, 2005, doi: 10.1016/j.cemconres.2005.03.016.
  • 48. F. Wheaton, “Review of oyster shell properties. Part II. Thermal properties,” Aquac. Eng., vol. 37, no. 1, pp. 14–23, 2007, doi: 10.1016/j.aquaeng.2006.11.002.
  • 49. H.-Y. Chen, L. G. LI, Z.-M. Lai, A. K.-H. Kwan, P.-M. Chen, and P.-L. NG, “Effects of Crushed Oyster Shell on Strength and Durability of Marine Concrete Containing Fly Ash and Blastfurnace Slag.,” Mater. Sci., vol. 25, no. 1, 2019, doi: 10.5755/j01.ms.25.1.22437.
  • 50. W. T. Kuo, H. Y. Wang, C. Y. Shu, and D. S. Su, “Engineering properties of controlled low-strength materials containing waste oyster shells,” Constr. Build. Mater., vol. 46, pp. 128–133, 2013, doi: 10.1016/j.conbuildmat.2013.04.020.
  • 51. U. G. Eziefula, J. C. Ezeh, and B. I. Eziefula, “Properties of seashell aggregate concrete: A review,” Constr. Build. Mater., vol. 192, no. March 2019, pp. 287–300, 2018, doi: 10.1016/j.conbuildmat.2018.10.096.
  • 52. M. Azmi and M. Johari, “Cockle Shell Ash Replacement for Cement and Filler in Concrete,” Malaysian J. Civ. Eng., vol. 25, no. 2, pp. 201–211, 2013, doi: 10.11113/mjce.v25n2.303.
  • 53. A. P. Adewuyi, S. O. Franklin, and K. A. Ibrahim, “Utilization of mollusc shells for concrete production for sustainable environment,” Int. J. Sci. Eng. Res., vol. 6, no. 9, pp. 201–208, 2015.
  • 54. M. Olivia, A. A. Mifshella, and L. Darmayanti, “Mechanical properties of seashell concrete,” Procedia Eng., vol. 125, pp. 760–764, 2015, doi: 10.1016/j.proeng.2015.11.127.
  • 55. P. Lertwattanaruk, N. Makul, and C. Siripattarapravat, “Utilization of ground waste seashells in cement mortars for masonry and plastering,” J. Environ. Manage., vol. 111, pp. 133–141, 2012, doi: 10.1016/j.jenvman.2012.06.032.
  • 56. N. D. Binag, “Powdered Shell Wastes as Partial Substitute for Masonry Cement Mortar in Binder, Tiles and Bricks Production,” Int. J. Eng. Res. Technol., vol. 5, no. 7, pp. 70–77, 2016.
  • 57. G. O. Bamigboye, A. T. Nworgu, A. O. Odetoyan, M. Kareem, D. O. Enabulele, and D. E. Bassey, “Sustainable use of seashells as binder in concrete production: Prospect and challenges,” J. Build. Eng., vol. 34, no. April 2020, p. 101864, 2021, doi: 10.1016/j.jobe.2020.101864.
  • 58. J. Burt, A. Bartholomew, A. Bauman, A. Saif, and P. F. Sale, “Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters,” J. Exp. Mar. Bio. Ecol., vol. 373, no. 1, pp. 72–78, 2009, doi: 10.1016/j.jembe.2009.03.009.
  • 59. C. Varhen, S. Carrillo, and G. Ruiz, “Experimental investigation of Peruvian scallop used as fine aggregate in concrete,” Constr. Build. Mater., vol. 136, pp. 533–540, 2017, doi: 10.1016/j.conbuildmat.2017.01.067.
  • 60. G. Bamigboye, D. Enabulele, A. O. Odetoyan, M. A. Kareem, A. Nworgu, and D. Bassey, “Mechanical and durability assessment of concrete containing seashells: A review,” Cogent Eng., vol. 8, no. 1, 2021, doi: 10.1080/23311916.2021.1883830.
  • 61. S. Ha, J. W. Lee, S. H. Choi, S. H. Kim, K. Kim, and Y. Kim, “Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling,” J. Mater. Cycles Waste Manag., vol. 21, no. 5, pp. 1075–1084, 2019, doi: 10.1007/s10163-019-00860-2.
  • 62. Y. Zhang, D. Chen, Y. Liang, K. Qu, K. Lu, S. Chen, and M. Kong, “Study on engineering properties of foam concrete containing waste seashell,” Constr. Build. Mater., vol. 260, p. 119896, 2020, doi: 10.1016/j.conbuildmat.2020.119896.
  • 63. E. I. Yang, M. Y. Kim, H. G. Park, and S. T. Yi, “Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete,” Constr. Build. Mater., vol. 24, no. 5, pp. 758–765, 2010, doi: 10.1016/j.conbuildmat.2009.10.032.
  • 64. Y. J. N. Djobo, A. Elimbi, J. Dika Manga, and I. B. Djon Li Ndjock, “Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers,” Constr. Build. Mater., vol. 113, pp. 673–681, 2016, doi: 10.1016/j.conbuildmat.2016.03.104.
  • 65. S. Cheng, Z. Shui, R. Yu, T. Sun, and X. Zhang, “Multiple influences of internal curing and supplementary cementitious materials on the shrinkage and microstructure development of reefs aggregate concrete,” Constr. Build. Mater., vol. 155, pp. 522–530, 2017, doi: 10.1016/j.conbuildmat.2017.08.037.
  • 66. M. D. A. Thomas, R. D. Hooton, A. Scott, and H. Zibara, “The effect of supplementary cementitious materials on chloride binding in hardened cement paste,” Cem. Concr. Res., vol. 42, no. 1, pp. 1–7, 2012, doi: 10.1016/j.cemconres.2011.01.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d8d362c-6c4e-4cc9-833e-95b9ecb65739
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.