Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we present a structure result concerning fuzzy fractals generated by an orbital fuzzy iterated function system ((X,d),(ƒi)i∈I,(ρi)i∈I) . Our result involves the following two main ingredients: (a) the fuzzy fractal associated with the canonical iterated fuzzy function system ((IN,dΛ),(τi)i∈I,(ρi)i∈I) , where dΛ is Baire’s metric on the code space IN and τi:IN→IN is given by τi((ω1,ω2,…))≔(i,ω1,ω2,…) for every (ω1,ω2,…)∈IN and every i∈I ; (b) the canonical projections of certain iterated function systems associated with the fuzzy fractal under consideration.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220217
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Faculty of Applied Sciences, Politehnica University of Bucharest, Splaiul Independenţei 313, Bucharest, Romania
autor
- Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu Street, nr. 50, 500091, Braşov, Romania
autor
- Faculty of Mathematics and Computer Science, Bucharest University, Romania, Str. Academiei 14, 010014, Bucharest, Romania
Bibliografia
- [1] J. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.
- [2] M. Barnsley and A. Vince, Developments in fractal geometry, Bull. Math. Sci. 3 (2013), no. 2, 299–348.
- [3] M. Iosifescu, Iterated function systems. A critical survey, Math. Rep.(Bucur.). 11(61) (2009), no. 3, 181–229.
- [4] K. Leśniak, N. Snigireva, and F. Strobin, Weakly contractive iterated function systems and beyond: a manual, J. Difference Equ. Appl. 26 (2020), no. 8, 166–182.
- [5] O. Stenflo, A survey of average contractive iterated function systems, J. Difference Equ. Appl. 18 (2012), no. 8, 1355–1380.
- [6] C. Cabrelli and U. Molter, Density of fuzzy attractors: a step towards the solution of the inverse problem for fractals and other sets, Probabilistic and Stochastic Methods in Analysis, with Applications (ll Ciocco, 1991), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 372, Kluwer Academic Publishers, Dordrecht, 1992.
- [7] C. Cabrelli, B. Forte, U. Molter, and E. Vrscay, Iterated fuzzy systems: a new approach to the inverse problem for fractals and other sets, J. Math. Anal. Appl. 171 (1992), no. 1, 79–100.
- [8] P. Diamond, Chaos in iterated fuzzy systems, J. Math. Anal. Appl. 184 (1994), no. 3, 472–484.
- [9] B. Forte, M. LoSciavo, and E. Vrscay, Continuity properties of attractors for iterated fuzzy set systems, J. Austral. Math. Soc. Ser. B. 36 (1994), no. 2, 175–193.
- [10] E. Oliveira and F. Strobin, Fuzzy attractors appearing from GIFZS, FuzzySets Systems 331 (2018), 131–156.
- [11] R. Miculescu, A. Mihail, and I. Savu. Iterated function systems consisting of continuous functions satisfying Banach’s orbital condition, An. Univ. deVest Timiş. Ser. Mat.-Inform. 56 (2018), no. 2, 71–80.
- [12] A. Mihail and I. Savu, Orbital φ-contractive iterated function systems, Proceedings of Research World International Conference, Czech Republic, Prague, 21–22 September 2020.
- [13] I. Savu, New aspects concerning IFSs consisting of continuous functions satisfying Banach’s orbital condition, J. Fixed Point Theory Appl. 21 (2019), no. 2, Paper No. 62, 11 pp.
- [14] A. Mihail and I. Savu, Orbital fuzzy iterated function systems, 2023, arXiv:2112.15496.
- [15] R. Miculescu, A. Mihail, and I. Savu, A characterization of the fuzzy fractals generated by an orbital fuzzy iterated function system, Carpathian J. Math. 38 (2022), no. 3, 583–595.
- [16] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Theory and Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d85527d-0dcb-4402-8c72-c95607b3cde1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.