PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the data set from a two-year observation of the ambient water-soluble ions bound to four particulate matter fractions in an urban background site in Southern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ten water-soluble ions (F, Cl, NO3, PO43–, SO42–, Na+, NH4+, K+, Ca2+, Mg2+), distributed among four fractions of particulate matter, PM, were investigated in an urban background site. The PM was sampled twice a week during a two-year sampling period. Mass distribution among the PM fractions and ambient concentrations of the ten PM-bound ions in the heating and non-heating periods, the seasonal effects in the PM fraction-bound ion concentrations (generalized regression model), and the principal components of all the resulting sets of ambient concentrations (principal component analysis) were determined, discussed, and interpreted in the terms of source apportionment of PM emissions. The formation of secondary inorganic aerosol in transformations of gaseous precursors (e.g., SOx, NOx, NH3) appeared to be most probable and significant source of PM2.5, especially of its sub-fraction PM1–2.5, in the non-heating period. In the heating period, PM and PM2.5 bound water-soluble ions originated mainly from combustion of coal and other solid fuels, or waste. Coarse particles (PM2.5–10 and PM10–40) and some PM2.5–40-bound ions (e.g. Na+, K+, Mg2+) may come from re-suspension of mineral matter and road dust. In some part, coarse PM may consist of mineral and salt particles containing gaseous and semi-volatile compounds.
Rocznik
Strony
137--149
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze
autor
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, ul. Nowoursynowska 166, 02-776 Warsaw, Poland
  • Gdynia Maritime University, Information Systems Department, ul. Morska 83, 81-225 Gdynia, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Bibliografia
  • [1] CHOW J.C., Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air. Waste. Manage., 1995, 45, 320.
  • [2] HINDS W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, Wiley, 2012.
  • [3] SEINFELD J.H., PANDIS S.N., Atmospheric Chemistry and Physics. From Air Pollution to Climate Change, Wiley, 2012.
  • [4] HARRISON R.M., YIN J., Particulate matter in the atmosphere: which particle properties are important for its effects on health?, Sci. Total. Environ., 2000, 249, 85.
  • [5] DAHER N., SALIBA N.A., SHIHADEH A.L., JAAFAR M., BAALBAKI R., SHAFER M.M., SCHAUERD J.J., SIOUTAS C., Oxidative potential and chemical speciation of size-resolved particulate matter (PM) at near-freeway and urban background sites in the greater Beirut area, Sci. Total. Environ., 2014, 470, 417.
  • [6] SCHLESINGER R.B., The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air. A critical review, Inhal. Toxicol., 2007, 19, 811.
  • [7] DUVALL R.M., MAJESTIC B.J., SHAFER M.M., CHUANG P.Y., SIMONEIT B.R.T., SCHAUER J.J., The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils, Atmos. Environ., 2008, 42, 5872.
  • [8] PATHAK R.K., WU W.S., WANG T., Summertime PM2.5 ionic species in four major cities of China. Nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 2009, 9, 1711.
  • [9] BANZHAF S., SCHAAP M., WICHINK K.R.J., DENIER VAN DER GON H.A.C., STERN R., BUILTJES P.J.H., Impact of emission changes on secondary inorganic aerosol episodes across Germany, Atmos. Chem. Phys., 2013, 13, 11675.
  • [10] TANG A., ZHUANG G., WANG Y., YUAN H., SUN Y., The chemistry of precipitation and its relation to aerosol in Beijing, Atmos. Environ., 2005, 39, 3397.
  • [11] ZHANG L., VET R., WIEBE A., MIHELE C., SUKLOFF B., CHAN E., MORAN M.D., IQBAL S., Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites, Atmos. Chem. Phys., 2008, 8, 7133.
  • [12] SHEN Z., ZHANG L., CAO J., TIAN J., LIU L., WANG G., ZHANG R, LIU S., Chemical composition, sources, and deposition fluxes of water-soluble inorganic ions obtained from precipitation chemistry measurements collected at an urban site in northwest China, J. Environ. Monitor., 2012, 14, 3000.
  • [13] CHEN J., QIU S., SHANG J., WILFRID O.M., LIU X., TIAN H., BOMAN J., Impact of relative humidity and water soluble constituents of PM 2.5 on visibility impairment in Beijing, China, Aerosol Air Qual. Res., 2014, 14, 260.
  • [14] MAJEWSKI G., CZECHOWSKI P.O., BADYDA A., BRANDYK A., Effect of air pollution on visibility in urban conditions. Warsaw case study, Environ. Prot. Eng., 2014, 40, 47.
  • [15] SILLANPÄÄ M., HILLAMO R., SAARIKOSKI S., FREY A., PENNANEN A., MAKKONEN U., SPOLNIK Z., GRIEKEN R.V., BRANIS M., BRUNEKREEF B., CHALBOT M.C., KUHLBUSCH T., SUNYER J., KERMINEN V.M., KULMALA M., SALONEN R.O., Chemical composition and mass closure of particulate matter at six urban sites in Europe, Atmos. Environ., 2006, 40, 212.
  • [16] BELIS C.A., KARAGULIAN F., LARSEN B.R., HOPKE P.K., Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 2013, 69, 94.
  • [17] ROGULA-KOZŁOWSKA W., KLEJNOWSKI K., ROGULA-KOPIEC P., OŚRÓDKA L., KRAJNY E., BŁASZCZAK B., MATHEWS B., Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland, Air Qual. Atmos. Health, 2014, 7, 41.
  • [18] ROGULA-KOZŁOWSKA W., KLEJNOWSKI K., ROGULA-KOPIEC P., MATHEWS B., SZOPA S., A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland, Bull. Environ. Contam. Toxicol., 2012, 88, 722.
  • [19] Technical report on measurements of fine PM in urban areas, IEE PAS own project 2009–2011, IEE PAS, Zabrze 2012 (in Polish).
  • [20] Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.
  • [21] CZECHOWSKI P.O., Mechanisms for evaluation of data quality in the concept of analytical system Eco Data Miner., Institute of Maritime Transport, Gdańsk 2009 (in Polish).
  • [22] CZECHOWSKI P., BADYDA A., MAJEWSKI G., Data mining system for air quality monitoring net-works, Arch. Environ. Prot., 2013, 39, 123.
  • [23] SÓWKA I., ZWOŹDZIAK A., TRZEPLA-NABAGLO K., SKRĘTOWICZ M., ZWOŹDZIAK J., PM2.5 elemental composition and source apportionment in a residential area of Wrocław, Poland, Environ. Prot. Eng., 2012, 38, 73.
  • [24] ZWOŹDZIAK A., SAMEK L., SÓWKA I., FURMAN L., SKRĘTOWICZ M., Aerosol pollution from small combustors in a village, Sci. World J., 2012, 1–8, ID 956401.
  • [25] ROGULA-KOZŁOWSKA W., BŁASZCZAK B., SZOPA S., KLEJNOWSKI K., SÓWKA I., ZWOŹDZIAK A., JABŁOŃSKA M., MATHEWS B., PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components, Environ. Monit. Assess., 2013, 185, 581.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d82d33b-3a97-49ea-8bff-04058b6c6a27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.