PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency analysis of the aerothermopressor application for intercooling between compressor stages by using CFD model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A study of the aerothermopressor operation for air intercooling between the stages of a multistage compressor as part of a modern gas turbine (LMS100 brand from General Electric) was carried out in the article. A calculation method has been developed using numerical modeling for the evaporation of fine water droplets in the air flow. The main characteristics of the two-phase flow at the aerothermopressor outlet have been determined. It has been found that jet apparatus provides efficient atomization of the liquid, and hence, more efficient isothermal compression process in a high-pressure compressor. The aerothermopressor applying allowed to reduce the temperature of the compressed air between the compressor stages to 50-70°C. Such a decrease in temperature under the thermo-gas-dynamic compression conditions allowed to increase the pressure at the aerothermopressor outlet up to 12-28 kPa (4-9%).
Słowa kluczowe
Rocznik
Strony
129--134
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue, 9, Mykolayiv, 54025, Ukraine
  • Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue, 9, Mykolayiv, 54025, Ukraine
  • Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue, 9, Mykolayiv, 54025, Ukraine
Bibliografia
  • [1] Reale M.J., New High Efficiency Simple Cycle Gas Turbine - GE’s LMS100. Reale M.J., GE Energy, 2004, 15 p.
  • [2] Forduy S., Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air. Forduy S., Radchenko A., Kuczynski W., Zubarev A., Konovalov D., Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, Springer, Cham, 2020, pp. 500-509.
  • [3] Radchenko A., Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System. Radchenko A., Mikielewicz D., Forduy S., Radchenko M., Zubarev A., Integrated Computer Technologies in Mechanical Engineering, ICTM 2019. Advances in Intelligent Systems and Computing, Springer, Cham, 2020, Vol. 1113, pp. 361-370.
  • [4] Radchenko M., Increasing the Operation Efficiency of Railway Air Conditioning System on the Base of Its Simulation Along the Route Line. Radchenko M., Radchenko R., Tkachenko V., Kantor S., Smolyanoy E., Integrated Computer Technologies in Mechanical Engineering, ICTM 2019. Advances in Intelligent Systems and Computing, Springer, Cham, 2020, Vol. 1113, pp. 461-467.
  • [5] Trushliakov E., Increasing the Operation Efficiency of Air Conditioning System for Integrated Power Plant on the Base of Its Monitoring. Trushliakov E., Radchenko A., Forduy S., Zubarev A., Hrych A., Integrated Computer Technologies in Mechanical Engineering, ICTM 2019. Advances in Intelligent Systems and Computing, Springer, Cham, 2020, Vol. 1113, pp. 351-360.
  • [6] Konovalov D., Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. Konovalov D., Kobalava H., Radchenko M., Scurtu I.C., Radchenko R., 9th International Conference on Thermal Equipment, Renewable Energy and Rural Development, 2020, E3S Web of Conferences 180, 01012.
  • [7] Kobalava H., Numerical Simulation of an Aerothermopressor with Incomplete Evaporation for Intercooling of the Gas Turbine Engine. Kobalava H., Konovalov D., Radchenko R., Forduy S., Maksymov V., Integrated Computer Technologies in Mechanical Engineering, ICTM 2020. Lecture Notes in Networks and Systems, Springer, Cham, 2021, Vol. 188, pp. 519-530.
  • [8] Jafarmadar S., Numerical Simulation of Flash Boiling Effect in a 3-Dimensional Chamber Using Computational Fluid Dynamic Techniques. Jafarmadar S., Jahangiramini A., International Journal of Engineering, 2016, Vol. 29(5), pp. 87-95.
  • [9] Konovalov D., Optimal Sizing of the Evaporation Chamber in the Low-Flow Aerothermopressor for a Combustion Engine. Konovalov D., Kobalava H., Radchenko M., Sviridov V., Scurtu I.C., Advanced Manufacturing Processes II. InterPartner 2020, LNME, Springer, Cham, 2021, pp. 654-663.
  • [10] Shi X., Heat transfer comparison investigation of mist/steam two-phase flow and steam in a square smooth channel. Shi X., Jiang G., Gao J., et al., Proc. IMechE, Part A: J Power and Energy, 2019, 233(7), pp. 877-889.
  • [11] Romanovskyy H.F., Vashchylenko M.V., Serbin S.I., Theoretical bases of the ship gas-turbine aggregates designing. UDMTU, Mykolayiv, 2003, 304 p.
  • [12] Sirignano W.A., Fluid dynamics and transport of droplets and sprays. 2nd edn. Cambridge University Press, New York, 2010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d826eaf-b9f9-4220-9f03-24ddb9eb4775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.