PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiple-output free space optical system with exponentiated gamma channel model and Greedy scheduling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces an advanced approach to analysing atmospheric turbulence in subcarrier quadrature amplitude modulation (SC-QAM) free space optical (FSO) systems through a development and application of the exponentiated gamma channel model. The study focuses on FSO systems with multiple receivers, employing Greedy scheduling to optimize link performance. A closed-form expression for the average bit error rate (BER) is derived, leveraging the SC-QAM modulation technique and the exponentiated gamma channel model to characterise turbulence-induced fading accurately. To enhance system robustness, the use of multiple receivers is proposed, and a novel expression for the BER in a multiple-output configuration is developed. Comprehensive simulations are conducted to validate the accuracy of the derived closed-form BER expression and to investigate the influence of key system parameters on performance. The analysis examines factors such as the link distance and the refractive index structure parameter, which are critical in determining the impact of turbulence on FSO links. The results demonstrate the significant benefits of employing multiple receivers, with Greedy scheduling shown to play a pivotal role in mitigating turbulence effects and improving overall BER performance. Furthermore, the findings highlight that increasing the number of receivers substantially enhances the system resilience to fading and turbulence, leading to a robust reduction in BER. This study not only provides valuable insights into the optimization of FSO systems under turbulence but also establishes a framework for future research on advanced scheduling algorithms and modulation techniques. The results underscore the importance of system design parameters and provide practical recommendations for enhancing the reliability and efficiency of the next-generation FSO communication networks.
Rocznik
Strony
art. no. e154746
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Department of Electronics and Communication Engineering, Ponjesly College of Engineering, Nagercoil, Tamil Nadu, India
autor
  • Department of Electrical and Electronics Engineering, V.O.C. College of Engineering, Anna University, Thoothukudi Campus, Thoothukudi, Tamil Nadu, India
  • Department of Mathematics, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
autor
  • Department of Electrical and Electronics Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
Bibliografia
  • [1] Adardour, H. E., Kameche, S. & Singh, M. A MIMO-enabled free space optical link under log-normal fading/gamma-gamma channel: Exploring an optimal modulation scheme. Int. J. Opt. 2023, 8020925 (2023). https://doi.org/10.1155/2023/8020925.
  • [2] Singh, H. & Sappal, A. S. Performance Analysis of FSO Link In Log-Normal Channel Using Different Modulation Schemes. in Intelligent Communication, Control and Devices (eds. Choudhury, S., Mishra, R., Mishra, R. & Kumar, A.) 143-155 (Springer, 2020). https://doi.org/10.1007/978-981-13-8618-3_16.
  • [3] Parikh, J. & Jain, V. K. Study on Statistical Models of Atmospheric Channel for FSO Communication Link. in 2011 Nirma University International Conference on Engineering 1-7 (IEEE, 2011). https://doi.org/10.1109/NUiConE.2011.6153263.
  • [4] Varotsos, G. K. et al. Probability of fade estimation for FSO links with time dispersion and turbulence modeled with the gamma–gamma or the I-K distribution. Optik 125, 7191-7197 (2014). https://doi.org/10.1016/j.ijleo.2014.08.047.
  • [5] Chen, D. & Hui, J. Parameter estimation of Gamma-Gamma fading channel in free space optical communication. Opt. Commun. 488, 126830 (2021). https://doi.org/10.1016/j.optcom.2021.126830.
  • [6] Srivastava, V., Mandloi, A., Patel, D. & Shah, P. Performance Analysis of Negative Exponential Turbulent FSO Links with Wavelength Diversity. in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) 1-5 (IEEE, 2020). https://doi.org/10.1109/CSNDSP49049.2020.9249618.
  • [7] Atiyah, M. A., Abdulameer, L. F. & Narkhedel, G. PDF comparison based on various FSO channel models under different atmospheric turbulence. Al-Khwarizmi Eng. J. 19, 78-89 (2023). https://doi.org/10.22153/kej.2023.09.004.
  • [8] Shen, B., Chen, J., Xu, G., Chen, Q. & Wang, J. Performance analysis of a drone-assisted FSO communication system over Málaga turbulence under AoA fluctuations. Drones 7, 374 (2023). https://doi.org/10.3390/drones7060374.
  • [9] Jain, P., Jayanthi, N. & Muthukaruppan, L. Outage Capacity of Mixture Gamma and Double Generalized Gamma Distribution in Dual-Hop RF/FSO Transmission System. in 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies 1-4 (IEEE, 2023). https://doi.org/10.1109/ViTECoN58111.2023.10157741.
  • [10] Jahid, M. H., Alsharif, M. H. & Hall, T. J. A contemporary survey on free space optical communication: Potential, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 200, 103311 (2020). https://doi.org/https://doi.org/10.1016/j.jnca.2021.103311.
  • [11] Ali, S. H. Advantages and limits of free space optics. Int. J. Adv. Smart Sens. Netw. Syst. 9, 1-6 (2019). https://doi.org/10.5121/ijassn.2019.9301.
  • [12] Jeon, H. B. et al. Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 61, 116-121 (IEEE, 2022). https://doi.org/10.1109/MCOM.001.2200220.
  • [13] Conrad, A. et al. Drone-based quantum communication links. Proc. SPIE 12446, 124460H (2023). https://doi.org/10.1117/12.2647923.
  • [14] Prabu, K. Analysis of FSO systems with SISO and MIMO techniques. Wirel. Pers. Commun. 105, 1133-1141 (2019). https://doi.org/10.1007/s11277-019-06139-x.
  • [15] Karp, D. B. & Prilepkina, E. On Meijer’s G function Gm,n p,p for m + n = p. Integral Transforms Spec. Funct. 34, 88-104 (2021). https://doi.org/10.1080/10652469.2022.2092730.
  • [16] Beals, R. & Szmigielski, J. Meijer G-functions: A gentle introduction. Not. Am. Math. Soc. 60, 866-873 (2013). https://doi.org/10.1090/NOTI1016.
  • [17] Olde Daalhuis, A. B. & Askey, R. A. Generalized Hypergeometric Functions and Meijer G-Function. in NIST Handbook of Mathematical Functions (eds. Olver, F. W. J, Lozier, D. W., Boisvert, R. F. & Clark, C. W.) 403-418 (Cambridge University Press, 2010).
  • [18] Chevillard, S. The functions erf and erfc computed with arbitrary precision and explicit error bounds. Inf. Comput. 216, 72-95 (2012). https://doi.org/10.1016/j.ic.2011.09.001.
  • [19] Oldham, K. B., Myland, J. C. & Spanier, J. The Error Function Erf(x) and Its Complement Erfc(x). in An Atlas of Functions: with Equator, the Atlas Function Calculator 405-415 (Springer, US, 2009).
  • [20] Shi, W., Kang, K., Wang, Z. & Liu, W. Performance analysis of hybrid SIMO-RF/FSO communication system with fixed gain AF relay. Curr. Opt. Photonics 3, 365-373 (2019). https://doi.org/10.3807/COPP.2019.3.5.365.
  • [21] Palliyembil, V., Vellakudiyan, J., Muthuchidamdaranathan, P. & Tsiftsis, T. A. Capacity and outage probability analysis of asymmetric dual-hop RF–FSO communication systems. IET Commun. 12, 1979-1983 (2018). https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-com.2017.0982.
  • [22] Ishpuniani, N., Aggarwal, M. & Garg, N. Outage analysis of dual hop FSO system with multiuser scheduling over gamma-gamma turbulence. SSRG Int. J. Eng. Trends Technol. 35, 237-242 (2016).
  • [23] Liu, T., Zhang, H.-l., Fu, H.-h., Wang, P. & Xiang, N. Performance analysis of multiuser diversity scheduling schemes in FSO communication system. Optoelectron. Lett. 14, 296-300 (2018). https://doi.org/10.1007/s11801-018-7274-z.
  • [24] Torabi, M., Haccoun, D. & Ajib, W. Analysis of the performance of multiuser MIMO systems with user scheduling over Nakagami-m fading channels. Phys. Commun. 3, 168-179 (2010). https://doi.org/10.1016/j.phycom.2009.08.011.
  • [25] Yi, X., Yao, M. & Wang, X. MIMO FSO communication using subcarrier intensity modulation over double generalized gamma fading. Opt. Commun. 382, 64-72 (2017). https://doi.org/10.1016/j.optcom.2016.07.064.
  • [26] Singh, H. & Sappal, A. S. Analysis of Rayleigh Fading Channel in FSO System with Respect to Eb/N0 for Different Modulation Schemes. in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) 1799-1803 (IEEE, 2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d823d55-c492-4057-98a3-2acd096df2c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.