PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In-situ nitrate remediation using nano iron/nickel particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Originally, the application of nano zero valent iron/nickel (nZVI/Ni) particles for nitrate removal in porous media was studied. nZVI/Ni was prepared and employed in batch and continuous modes. Based on batch experiments, the reaction kinetics was consistent with the adsorption model by the order of 1–1.5. The variation of the kinetics order depends on pH and nickel content. So that highest reactivity was observed for nZVI with 10% of Ni at pH ≤ 3. Nitrate remediation in a continuous system was mostly influenced by seepage velocity, quantity and freshness of nZVI/Ni and particle size of porous media. In a batch mode, the maximum nitrate removal was 99% while in a continuous mode it did not exceed 85%.
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 21 poz., tab., rys.
Twórcy
  • Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
autor
  • Department of Chemical and Petroleum Engineering and Institute of Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
autor
  • Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Bibliografia
  • [1] HASHIM M.A., MUKHOPADHYAY S., SAHU J.N., SENGUPTA B., Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 2011, 92, 2355.
  • [2] CUNDY A.B., HOPKINSON L., WHITBY R.L.D., Use of iron-based technologies in contaminated land and groundwater remediation. A review, Sci. Total Environ., 2008, 400, 42.
  • [3] RANGSIVEK R., JEKEL M.R., Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Res., 2005, 39, 4153.
  • [4] YANG G.C.C., LEE H.-L., Chemical reduction of nitrate by nanosized iron: kinetics and pathways, Water Res., 2005, 39, 884.
  • [5] XI Y., MALLAVARAPU M., NAIDU R., Reduction and adsorption of Pb2+ in aqueous solution by nano--zero-valent iron. SEM, TEM and XPS study, Mater. Res. Bull., 2010, 45, 1361.
  • [6] ZHANG X., DENG B., GUO J., WANG Y., LAN Y., Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron, J. Environ. Manage., 2011, 92, 1328.
  • [7] KIM K.-R., LEE B.-T., KIM K.-W., Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating, J. Geochem. Explor., 2012, 113, 124.
  • [8] FAGERLUND F., ILLANGASEKARE T.H., PHENRAT T., KIM H.J., LOWRY G.V., PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone, J. Contam. Hydrol., 2012, 131, 9.
  • [9] POPOVICH D.M., MCALHANY A., Practitioner care and screening guidelines for infants born to chlamydia-positive mothers, Newborn and Infant Nursing Reviews, 2004, 4, 51.
  • [10] LI L., BENSON C.H., LAWSON E.M., Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers, J. Contam. Hydrol., 2006, 83, 89.
  • [11] PENG S., WANG C., XIE J., SUN S., Synthesis and stabilization of monodisperse Fe nanoparticles,J. Am. Chem. Soc., 2006, 128, 10676.
  • [12] LEE C., JEE Y.K., WON I.L., NELSON K.L., YOON J., SEDLAK D.L., Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli, Environ. Sci. Technol., 2008, 42, 4927.
  • [13] LIEN H.-L., ZHANG W.-X., Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination, Appl. Catal. B: Environ., 2007, 77, 110.
  • [14] KANEL S.R., NEPPOLIAN B., CHOI H., YANG J.W., Heterogeneous catalytic oxidation of phenanthrene by hydrogen peroxide in soil slurry: Kinetics, mechanism, and implication, Soil Sediment Contamin., 2003, 12, 101.
  • [15] MARTIN J.E., HERZING A.A., YAN W., LI X.Q., KOEL B.E., KIELY C.J., ZHANG W.X., Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles, Langmuir, 2008, 24, 4329.
  • [16] SUN Y.P., LI X.Q., CAO J., ZHANG W.X., WANG H.P., Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 2006, 120, 47.
  • [17] O’CARROLL D., SLEEP B., KROL M., BOPARAI H., KOCUR C., Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Res., 2013, 51, 104.
  • [18] ZHANG X.Y.W., Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes,Indus. Eng. Chem. Res., 2000, 39, 2238.
  • [19] HOSSEINI S.M., ATAIE B., KHOLGHI M., Nitrate reduction by nano/Fe/Cu particles in packed column,Desalination, 2011, 276, 214.
  • [20] HUANG Y.H., ZHANG T.C., Effects of low pH on nitrate reduction by iron powder, Water Res., 2004, 38, 2631.
  • [21] CHOE S., CHANG Y.Y., HWANG K.Y., KHIM J., Kinetics of reductive denitrification by nanoscale zero--valent iron, Chemosphere, 2000, 41, 1307.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d7c3cab-27ec-452d-820b-fc01158a4e6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.