PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Structure of Low MolecularWeight Esters on Poly(lactic acid) in the Plasticization Process - part 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymers derived from renewable sources which are additionally subject to degradation processes are currently an interesting alternative to conventional polymers of petrochemical origin. One of such polymers is poly(lactic acid) (PLA), which can be used in the packaging, textile and also medical industries. Its great advantage is the susceptibility to biodegradation and the nontoxicity of the degradation products. Because of high brittleness and stiffness, the modification of PLA is necessary to improve its plastic deformability, which can expand the new application possibilities. As part of the research work, the modification of PLA by plasticisation was undertaken to improve its plastic deformability properties. The low molecular mass esters from the citrate group and glycerol triacetate were used. The samples extruded from plasticised polymer were characterised using Differential Scanning Calorimetry (DSC) and Gel Permeation Chromatography/Size Exclusion Chromatography (GPC/SEC). The mechanical properties and melt flow rate after modification were determined. The aim of the research was to determine the relationship between the structure of a plasticiser and its ability to reduce the interactions in the polymer chain in order to develop an optimal polymerplasticiser arrangement. Based on this research, there was no relationship between the efficiency of the plasticisation process and the increasing molecular mass of the plasticiser. The additional chemical (acetyl) group in the plasticiser also does not increase the efficiency of the PLA plasticisation process. In the next steps of the research, functional forms will be produced, i.e. fibers, films, and fittings from the selected polymer-plasticiser systems.
Rocznik
Strony
93--101
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90 570 Łódź, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design 116 Żeromskiego Str., 90-924 Łódź, Poland
autor
  • Łukasiewicz Research Network - Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90 570 Łódź, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design 116 Żeromskiego Str., 90-924 Łódź, Poland
  • Łukasiewicz Research Network - Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90 570 Łódź, Poland
  • Łukasiewicz Research Network - Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90 570 Łódź, Poland
  • Łukasiewicz Research Network - Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90 570 Łódź, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design 116 Żeromskiego Str., 90-924 Łódź, Poland
Bibliografia
  • 1. Lopes MS, Jardini AL, Filho RM. Poly(lactic acid) production for tissue engineering applications. Procedia Eng 2012;42: 1402-1413. Doi:10.1016/j.proeng.2012.07.534
  • 2. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci.2007;32:762-798. Doi:10.1016/j.progpolymsci.2007.05.017
  • 3. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv. Mater. 2000;12:1841-1846. Doi:10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  • 4. Perego G,. Cella GD, Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996;59 37-43.
  • 5. Bechtold K, Hillmyer MA, Tolman WB. Perfectly Alternating Copolymer of Lactic Acid and Ethylene Oxide as a Plasticizing Agent for Polylactide. Macromolecules 2001;34:8641-8648. Doi:10.1021/ma0114887
  • 6. Park JW, Im SS, Km SH, Kim YH. Biodegradable polymer blends of poly(Llactic acid) and gelatinized starch. Polym. Eng. Sci. 2000;40:2539- 2550. Doi:10.1002/pen.11384
  • 7. Martin O, Averous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polym. 2001;42:6209-6219. Doi:10.1016/S0032-3861(01)00086-6
  • 8. Eguiburu JL, Iruin JJ, Fernan-dez-Berridi MJ, Roman JS. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polym. 1998;39:6891-6897. Doi:10.1016/S0032-3861(98)00182-7
  • 9. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polym.1996;37:5849-5857. Doi:10.1016/S0032-3861(96)00455-7
  • 10. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP. Citrate Esters as Plasticizers for Poly(lactic acid). J. Appl. Polym. Sci.1997;66:1507-1513. Doi:10.1002/(SICI)1097-4628(19971121)66:8<1507::AIDAPP11>3.0.CO;2-0
  • 11. Ljungberg S, Wesselen BJ. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Appl. Polym. Sci 2020;86:1227-1234. Doi:10.1002/app.11077
  • 12. Jacobsen S, Fritz HG. Plasticizing Polylactide-The Effect of Different Plasticizers on the Mechanical Properties. Polym. Eng. Sci. 1999;39:1303-1310. Doi:10.1002/pen.11517
  • 13. Hu Y, Rogunova M. Topolkaraev V, Hiltner A, Baer E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polym. 2003;44:5701-5710. Doi:10.1016/S0032-3861(03)00614-1
  • 14. Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(L-lactide). Polym. 2005;46:10290-10300. Doi:10.1016/j.polymer.2005.07.101
  • 15. Piorkowska E, Kulinski Z, Galeski A, Masirek R. Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polym. 2006;47:7178-7188. Doi: 10.1016/j.polymer.2006.03.115
  • 16. Zhang J, Wang S, Zhao D, Zhang Y, Pang W, Zhang B, Li Q. Improved processability and performance of biomedical devices with poly(lactic acid)/poly(ethylene glycol) blends. J. Appl. Polym. Sci. 2017;137: 45194-45201. Doi:10.1002/app.45194
  • 17. Houwink R. Proc. XI Int. Cong. Pure Appl. Chem.1947:575-583.
  • 18. Marcilla A, Beltrán M. Mechanisms of Plasticizers Action. Handbook of Plasticizers 2012:119-133. Doi:10.1016/B978-1-895198-50-8.50007-2
  • 19. Doolittle AK. The Technology of Solvents and Plasticizers, John Wiley & Sons, New York, 1954:14- 15.
  • 20. Doolittle AK. Mechanism of Plasticization, Bruins P F, Ed., Plasticizer Technology, Reinhold 1965;1.
  • 21. Palsule S. Encyclopedia of Polymers and Composites, Plasticizers 2015. Doi:10.1007/978-3-642-37179-0_73-1
  • 22. Kirk‐Othmer encyclopedia of chemical technology, 3rd ed. Wiley‐Interscience, 1978:I.
  • 23. Cadogan DF, Howick CJ. Plasticizers. Ullmann’s encyclopedia of industrial chemistry 2012. Doi: 10.1002/14356007.a20_439
  • 24. Gzyra-Jagieła K, Sulak K, Draczyński Z, Podzimek S, Gałecki S, Jagodzińska S, Borkowski, D. Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry. Polymers 2021, 13, 3651. https://doi.org/10.3390/polym13213651
  • 25. Kurata M, Tsunashima Y. Viscosity-Molecular Weight Relationship and Unperturbed Dimensions of Linear Chain Molecules. Polymer Handbook 2nd ed., J.Wiley 1975; IV.
  • 26. Dorgman J, Janzen J, Knauss D, Hait S.B, Limoges B.R, Hutchinson M.H. Fundamental Solution and Single-Chain Properties of Polylactides, J.Polym.Sci.:Part B: Polymer Physics 2005;43:3100-3111
  • 27. Maiza M, Benaniba M.T, Massardier-Nageotte V. Plasticizing effects of citrate esters on properties of PLA. J Polym Eng 2015. Doi:10.1515/polyeng-2015-0140
  • 28. Singh S, Patel M, Schwendemann D, Zaccone M, Geng S, Maspoch M.L,Oksman K. Effect of Chitin Nanocrystals on Crystallization and Properties of Poly(lactic acid)-Based Nanocomposites. Polymers 2020;12;726. Doi:10.3390/polym12030726
  • 29. Gálvez J, Aguirre J.P.C, Salazar M.A.H, Mondragón B.V, Wagner E, Caicedo C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers 2020, 12, 2111; doi:10.3390/polym12092111
  • 30. Cohn D, Younes H.J. Biodegradable PEO/PLA block copolymers. Biomed. Mater. Re,. 1988,22,993. doi:10.1002/jbm.820221104
  • 31. Lee J.K; Lee K.H, Jin B.S. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Eur. Polym. J. 2001,37,907. Doi:10.1016/j.matlet.2011.07.090
  • 32. Zhang J, Tsuji H, Noda I, Ozaki Y. Structural Changes and Crystallization Dynamics of Poly(L-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules 2004,37,6433-6439. Doi: 10.1021/ma049288t
  • 33. Siracusa V,Blanco I,Romani S, Tylewicz U, Rocculi P, Rosa M.D. Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 2012;125. Doi:10.1002/app.36829
  • 34. Auras, R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004;4;835-864. Doi:10.1002/mabi.200400043.
  • 35. Witzke D. R. Introduction to properties, engineering and prospects of polylactide polymers. PhD Thesis. Michigan State University, East Lansing, MI, 1997; p. 389.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d73c37b-599b-4e09-a19a-9022af78b8b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.