PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Building the carbonate pore-type classifer for well logging via the blended training dataset

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exploration of carbonate rocks has outstanding economic benefts, as well as facing the extreme challenge of reservoir characterization. This article has proposed a data-based description scheme generalizing carbonate pore-type characteristics from both laboratory measurements and theoretical predictions to the well logging dataset. Firstly, in the feature space of elastic properties, we employed the supervised machine learning (ML) algorithm to convert this pore-type classifcation process from a typical nonlinear inversion to sample label allocation problem. Secondly, to alleviate the inherent scale gaps between data sources, virtual samples were randomly mixed into the laboratory measured dataset. Through inheriting or mimicking statistical elastic features of limited core samples, the new built training dataset could improve the overall sample richness and thus help the ML algorithms making better identifcation decisions. On the one hand, this scheme was verifed by 74 carbonate samples. In the feature space of high dimensions, the blended dataset trained radial basis function support vector machine accurately separated diferent carbonate pore systems. Moreover, using logging curves of a carbonate gas feld, we verifed the generalization capability of this scheme over unbalanced data scales. Searching skills were used to optimize model and classifer setups according logging curves of a specifc interval. Finally, with the help of the vertical label distributions, logging elastic response modes and historical pore evolution footprints were further studied.
Czasopismo
Rocznik
Strony
77--94
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • College of Transportation Science & Engineering, Nanjing Tech University, Nanjing 210009, China
autor
  • Sinopec Geophysical Research Institute, Nanjing 211103, China
autor
  • Sinopec Geophysical Research Institute, Nanjing 211103, China
  • School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, China
Bibliografia
  • 1. Avseth P, Mukerji T, Mavko G et al (2010) Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—a review of selected models and suggested work flows. Geophysics 75(5):A31–A47
  • 2. Baechle G, Colpaert A, Eberli G et al (2008) Effects of microporosity on sonic velocity in carbonate rocks. Lead Edge 27(8):1012–1018
  • 3. Berryman JG (1995) Mixture theories for rock properties, rock physics and phase relations: a handbook of physical constants. Am Geophys Union 3:205–228
  • 4. Berryman JG, Pride SR, Wang HF (2002) A differential scheme for elastic properties of rocks with dry or saturated cracks. Geophys J Int 151:597–611
  • 5. Brigaud B, Durlet C, Deconinck JF et al (2009) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on middle Jurassic carbonates (Paris basin, france). Sed Geol 222(3–4):181–206
  • 6. Choquette PA, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250
  • 7. Cortes C, Vapnik V (1995) Support vector networks. Machin Learn 20(3):273–297
  • 8. Dietrich R, Opper M, Sompolinsky H (2008) Statistical mechanics of support vector networks. Phys Rev Lett 82(14):2975–2978
  • 9. Dou Q, Sun Y, Sullivan C (2011) Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, upper San Andres reservoir, Permian Basin, west Texas. J Appl Geophys 74(1):8–18
  • 10. Eberli GP, Baechle GT, Anselmetti FS et al (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge 22:654–660
  • 11. Huang Q, Dou Q, Jiang Y et al (2017) An integrated approach to quantifying geological controls on carbonate pore types and permeability, Puguang gas field. China Interpret 5(4):1–49
  • 12. Keys RG, Xu S (2002) An approximation for the Xu-white velocity model. Geophysics 67:1406–1414
  • 13. Kumar M, Han DH (2005) Pore shape effect on elastic properties of carbonate rocks. SEG Tech Program Expand Abstr 24:1477
  • 14. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media, part 1, theoretical formulations. Geophysics 39:587–606
  • 15. Li H, Zhang J (2010) Modulus ratio of dry rock based on differential effective-medium theory. Geophysics 75(2):N43
  • 16. Li B, Shen H, Qu S et al (2018) Tight carbonate reservoir characterization based on the modified rock physics model. J Appl Geophys 159:374–385
  • 17. Mollajan A, Memarian H (2016) Rock physics-based carbonate pore type identification using Parzen classifier. J Petrol Sci Eng 145:205–212
  • 18. Nur AM, Mavko G, Dvorkin J et al (2000) Critical porosity, a key to relating physical properties to porosity in rocks. Lead Edge 17:878–881
  • 19. Regnet JB, Robion P, David C et al (2015) Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology. J Geophys Res 120(2):790–811
  • 20. Sayers CM (2008) The elastic properties of carbonates. Lead Edge 27:1020–1024
  • 21. Song C, Alkhalifah T (2020) An efficient wavefield inversion for transversely isotropic media with a vertical axis of symmetry. Geophysics 2020:1–51
  • 22. Stadtmuller M (2019) Well logging interpretation methodology for carbonate formation fracture system properties determination. Acta Geophys 67(6):1933–1943
  • 23. Sun Y (2004) Pore structure effects on elastic wave propagation in rocks: AVO modelling. J Geophys Eng 1(4):268–276
  • 24. Vanorio T, Mavko G (2011) Laboratory measurements of the acoustic and transport properties of carbonate rocks and their link with the amount of microcrystalline matrix. Geophysics 76(4):E105
  • 25. Weger RJ, Eberli GP, Baechle GT et al (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull 10(10):1297–1317
  • 26. Xu S, Payne MA (2009) Modeling elastic properties in carbonate rocks. Lead Edge 28:66–74
  • 27. Xu S, White RE (1995) A new velocity model for clay-sand mixtures. Geophys Prospect 43:91–118
  • 28. Yin X, Hua S, Zong Z (2016) A decoupling approach for differential equivalent equations based on linear approximation. Oil Geophys Prospect 51(2):281–287
  • 29. Zhang J, Li H, Yao F (2012) Rock critical porosity inversion and S-wave velocity prediction. Appl Geophys 9(1):57–64
  • 30. Zhao L, Nasser M, Han D (2013) Quantitative geophysical pore type characterization and geological implications in carbonate reservoir. Geophys Prospect 61(4):827–841
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d71e24d-9aa5-41b7-981d-b3be0d7a059e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.