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HAND POSTURE RECOGNITION
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OF SHAPE FUNCTIONS
AND GLOBAL RADIUS-BASED
SURFACE DESCRIPTOR

Abstract This paper presents an approach to the recognition of static hand gestures based

on data acquired from 3D cameras and point cloud descriptors: Ensemble of

Shape Functions and Global Radius-based Surface Descriptor. We describe

a recognition algorithm consisting of hand segmentation, noise removal and

downsampling of point clouds, dividing point cloud bounding boxes to cells,

feature extraction and normalization, and gesture classification. Modifications

to the descriptors are proposed in order to increase the hand posture recognition

rates while decreasing the quantity of used features as well as the computational

cost of the algorithm. Experiments performed on four challenging datasets

using cross-validation tests prove the usefulness of our approach.
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1. Introduction

Nowadays, more and more emphasis is being placed on the communication of people

with computers and machines in a natural way; e.g., using hand gestures. The hand

is the most functional part of the human body by which people communicate when

verbal communication is not possible. It is often use as an aid to verbal communica-

tion. There is, therefore, a need to develop methods of automatic gesture recognition

in applications such as human-robot-interaction, controlling smart home devices, ma-

nipulating virtual objects, controlling television sets and other multimedia hardware

or computer games, and interpreting sign language statements; e.g., for automatic

translation to a spoken or written language.

The last of the listed applications is very important in the context of communica-

tion with deaf and hearing-impaired people in typical situations in which a translator

is usually required. Applying an automatic sign language communicator could, the-

refore, make it easier for the deaf community to function in society.

Recognition of static hand gestures is a challenging issue. It can be assumed

that the recognition of static hand postures is even more challenging than recognizing

dynamic gestures (with motion) because, contrary to this, algorithms of static gesture

recognition do not use information of moving hand trajectory (which is very useful

in distinguishing between the gesture classes). The classification is, therefore, only

based on hand shape features. Moreover, some hand shapes representing different

gestures are very similar to each other; e.g., the letters M and N as well as S and T

of the American Finger Alphabet.

In our work, we use data acquired from 3D cameras in the form of point clouds.

Three-dimensional data (or depth data) has several advantages over standard color or

gray images. One of these is the possibility of hand segmentation based on depth that

can be more accurate than methods that rely solely on color information. Another

advantage is the representation of objects by features based on the surface curvature in

addition to the standard 2D shape features typical for color or gray images. Moreover,

some models of 3D cameras (using time-of-flight technology) work correctly under

poor lighting conditions or even in absolute dark, which can be another advantage.

This paper presents an approach to static hand posture recognition based on 3D

data and two point cloud descriptors: Ensemble of Shape Functions (ESF) and the

Global Radius-based Surface Descriptor (GRSD). These descriptors are available in

the Point Cloud Library (PCL) for the C++ language, and they are used to describe

the geometry of objects represented by 3D data in order to distinguish classes of

objects. They are designed to recognize objects like tools, toys, fruits, etc. We propose

to use them to describe hand postures and utilize this information in recognition

methods. Modifications of these descriptors are proposed to better describe hand

geometry and, therefore, improve hand posture recognition rates while decreasing the

quantity of used features and the computational cost of the algorithm.
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The proposed recognition method can be used with 3D depth cameras based on

structural light or time-of-flight technologies. Some examples of such cameras are

Kinect, Kinect 2, and MESA SR4000.

The remaining part of the paper is organized as follows. Section 2 contains an

overview of related publications. Our proposed hand posture recognition method is

presented in Section 3. Section 4 discusses two 3D point cloud descriptors and their

proposed modifications. In Section 5, we describe the performed experiments and

present their results. The conclusions and future works are included in Section 6.

2. Related work

In recent years, there has been increasing interest in the subject of object recognition

using data from 3D cameras. Currently, methods of static hand posture recognition

exist that use 3D data in the form of a point cloud or depth map. In some of these, the

3D information is used as an addition to color, gray, or skeletal data; e.g., [33, 37, 21].

The recognition method proposed in [24] is based on Gabor filters and a random

forest classifier. In [22], Gabor filters are also used along with a multi-class SVM

(Support Vector Machine) classifier with the all-versus-all method. Wang et al. [35]

described an algorithm that uses a shape descriptor developed by them based on

the polar representation of hand images obtained using depth data. The Depth-

projection-based Bag of Contour Fragments, the recognition algorithm presented by

Feng et al. [6], is used to extract the hand region and describe its shape. Molina et

al. [20] proposed an algorithm of static and dynamic hand-gesture recognition based

on the geodesic description of the 3D hand surface and k-nearest neighbor (KNN)

classification. In [40], the Histogram of 3D Facets is described. It uses so-called 3D

facets as local supporting surfaces related to each point of the cloud. The classification

is performed by an SVM with a linear kernel function. In [11], hand postures are

classified using multi-layered random forests. Another approach using 3D data and

Hu moments is presented in [39]. Li [12] utilized information about the angles between

extended fingers and a two-stage classification that eliminated gestures with different

numbers of detected fingers in the first stage. Plouffe et al. [23] proposed a method of

comparing data sequences (Dynamic Time Warping - DTW) to static hand posture

recognition, although this technique is usually used for the classification of dynamic

gestures (e.g., [28]). In [25], the authors developed a system of gesture recognition

based on the convex shape decomposition method that uses Morse functions.

The algorithms presented in [10, 5] utilize 3D data from Kinect and synthetically

generated hand models (3D [10] or 2D [5]) with separated particular hand parts.

These models are used by the random forest classifier, which uses them to categorize

each pixel, the dividing hand shape of a classified gesture into similar fragments.

Then, a hierarchical mode-seeking method is used to designate hand joints. Finally,

the classifier (SVM [10] or random forests [5]) makes a selection of the class using

features based on the angular relationships of the joints.
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Dominio et al. [4] proposed an SVM classification and four combined depth

features: (i) the distances of the fingertips from the palm center; (ii) the distances

of the fingertips from a plane fitted on the palm samples; (iii) the curvature of the

contour of the hand region; and (iv) the shape of the palm region. In [14], depth

features from [4] are used along with the features obtained from the skeletal data

acquired by a Leap Motion camera. Ren et al. [26] described a method of measuring

the differences between hand shapes on the basis of Finger-Earth Mover’s Distance

(FEMD) - a modified version of the Earth Mover’s Distance (EMD) metric (modified

to work better with hand shapes).

The recognition method from our work does not use any other information than

depth (e.g., to detect skin color in order to separate the hand region from the back-

ground [4]) and does not require the user to wear particular clothing (e.g., long sleeves

[13, 32]), use additional objects such as gloves (e.g., [8, 31]) or wrist bands (e.g.,

[26, 32]), nor performing gestures on a simple uniform background (e.g., [7, 32]).

3. Hand posture recognition method

Our recognition method consists of hand segmentation, noise removal and downs-

ampling of the point cloud, dividing the point cloud bounding box to cells, feature

extraction and normalization of gesture classification.

Two different segmentation methods were used depending on the used dataset

(see Subsection 5). The first is the method of the “gesticulation area” that works well

even with cameras featuring relatively inaccurate depth data (e.g., MESA SR4000).

It requires the user to perform gestures in the fixed 3D area and separates the hand

from the background based on the area boundaries and information about user’s hand

size (which should be measured by the user or the algorithm). This is a simple method

that can roughly separate the forearm region from the hand if the requirements are

met. It is, however, sufficient in the hand posture recognition that was shown in [9],

where the method is described in detail.

The second segmentation method (called “precise segmentation”) is much more

complex, effective, and does not require gestures to be performed in a fixed area nor

measure the user’s hand. However, it requires 3D data with relatively accurate depth

(e.g., from the Kinect or Kinect 2 camera) and occurrence of at least a small portion

of the forearm within the point cloud. These requirements are met only in the case of

two out of the four datasets used in the experiments, which is the reason for adopting

two different segmentation methods. The algorithm is based on finding the hand

center point using a Gaussian blur with a relatively large kernel on a binarized hand

image and fitting the largest possible circle in the palm region. This is described in

detail in [36].

Point clouds obtained from 3D cameras (especially time-of-flight types) often

include noise in the form of isolated points. Therefore, we filter each cloud by removing

the points that have a small number of neighboring points within the given radius.
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Another problem is that point clouds are often too redundantly dense for posture

recognition. There is no need for such a large number of points to calculate represen-

tative descriptor features. For this reason, the cloud is downsampled, which means

reducing the number of points and, therefore, speeding up the calculation of the des-

criptors. This operation is performed by the so-called voxel grid filter, which creates a

3D voxel grid over the input point cloud data. Each point situated within each voxel

(3D cuboid) is approximated by its centroid. Voxel dimensions Vx × Vy × Vz are the

parameters of the filter. In the experiments performed in this work, cubic voxels are

used. We experimentally found that the dimensions of Vx = Vy = Vz = 4.5 mm are

sufficient to calculate the representative features of the descriptors. Larger dimen-

sions cause worse recognition rates and their larger spread, especially if the value is

greater than 7 mm.

In our method, the bounding box must be generated before calculating the des-

criptors. This can be defined as the smallest possible cuboid that entirely embraces

the point cloud. Its walls are determined by the points situated furthest towards each

main direction of the coordinate system. The front and back walls are parallel to the

camera lens. The bounding box fits in the point cloud, making no spaces between

the furthest points and the box wall; thus, the box size is matched to the cloud size.

To increase the distinctiveness of the descriptor, we divide the bounding boxes into

several cells of equal sizes, and the descriptor values are calculated for each of them.

The experiments undertaken in [9, 36] showed that dividing the bounding box into

three horizontal cells yields the best results in the hand posture recognition problem

in most cases (nine cubic cells and three vertical cells were also verified). Therefore,

the box is divided to three horizontal cells in this work (see Fig. 1).

Figure 1. Filtered and downsampled point cloud corresponding to hand with extended thumb

and its bounding box divided into three horizontal cells

For posture classification, we use the k-nearest neighbor method with the Eucli-

dean metric and k = 1.
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4. Descriptors and their modifications

The descriptor of a point cloud can be defined as the method of describing its geo-

metric properties. There are two types of descriptors: local and global. The local

descriptors are calculated for a single point and describe their local geometry within

the neighborhood of a given radius or number of points. The global descriptors des-

cribe the geometry of the whole cluster representing an object [1]. In our work, we

use two global descriptors (Ensemble of Shape Functions and Global Radius-based

Surface Descriptor), and we propose their modification.

4.1. Ensemble of Shape Functions

Ensemble of Shape Functions (ESF) was first described in [38]. It is a combination of

three different functions describing the following properties of a point cloud: distances

between the points and areas as well as the angles formed by connecting them. ESF

consists of 10 histograms of a size equal to 64 bins. The algorithm of calculating the

histograms is repeated a fixed number of times. In each iteration, points p1, p2, p3

are randomly generated, for which the values of features D2, D2− ratio, D3, A3 are

calculated. According to [38], the number of iterations should be equal to 40,000;

however, in the ESF implementation in the Point Cloud Library [29], this number

is set to 20,000. We propose to treat this value as parameter ESFn and verify the

possibility of decreasing it in order to make the algorithm faster and maintaining

similar recognition rates. The experiments with the ESFn parameter are presented

in Subsection 5.

D2 is a feature consisting of three histograms. Their creation involves calculating

the distances between points p1, p2, and p3. Then, for each pair, the algorithm

determines whether the line connecting the points lies entirely inside the cloud surface,

entirely outside the surface (excluding the first and last points), or partially inside

and partially outside the surface. Depending on this, a value denoting the distance

between the points is placed in one of three sub-histograms: IN, OUT, or MIXED.

The D2−ratio is a feature represented by one histogram that describes the ratio

between the lengths of the lines located inside and outside the surface. Only the lines

placed inside the MIXED sub-histogram are taken into account.

D3 consists of three histograms. To generate them, the algorithm calculates the

square root of the area of the triangle whose vertices are located at points p1, p2,

and p3. These values are placed in three sub-histograms (similar to the D2 feature)

depending on whether the triangle sides lie entirely inside the surface, entirely outside

it, or both.

The A3 feature is represented by three histograms that are created based on

calculating the angles between the lines connecting points p1, p2, and p3. These

values are placed in three sub-histograms depending on whether the line opposite to

the angle lies entirely inside the surface, entirely outside it, or both.



Ea
rly
bi
rd

Hand posture recognition using modified Ensemble of Shape Functions . . . 121

Fig. 2 illustrates the method of calculating particular histograms. The authors

of ESF claim that the descriptor is able to cope with camera characteristic differences,

thus enabling the robust classification of 3D objects.

Figure 2. Calculation of ESF features

It is worth noting that the values of the D2, D3, and A3 features are placed in

the IN sub-histogram only if the surface coinciding with the lines is almost comple-

tely flat, and the values are placed in the OUT sub-histogram if the surface is very

convex. Such situations are relatively rare, which results in ”flat” sub-histograms IN

and OUT (generated by a small number of values) that are unrepresentative. Our

proposition is a modification of the descriptor consisting of replacing the IN and OUT

sub-histograms with MOSTLY-IN and MOSTLY-OUT cumulating values, for which

the lines lie mostly inside the cloud surface or mostly outside it. For example, in the

case of the D2 feature, if no more than ESF2mo% of the line length lies inside the

surface, this value is placed in MOSTLY-OUT; whereas, if no less than 100-ESF2mi%

of the line length lies inside the surface, the value is placed in MOSTLY-IN. ESF2mo

and ESF2mi are the parameters of the method. The experiments performed for se-

veral datasets let us set these values as follows: ESF2mo = 35, ESF2mi = 20 for the

A3 and D3 features, and ESF2mo = 25, ESF2mi = 35 for the D− 2 and D2− ratio

features.

In Section 5, the results of the experiments verifying the recognition rates using

the original as well as the modified version (called ESF2) are presented.
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To illustrate the effects of ESF and ESF2, we show the histograms calculated

for two different hand postures in Fig. 3. Please note ”flat” sub-histograms IN and

OUT, which justify the proposed modifications of the ESF descriptor. Sub-histograms

MOSTLY-IN and MOSTLY-OUT of the modified ESF2 descriptor visibly contain

more values.

Figure 3. ESF histograms generated for all point clouds representing two hand postures: sub–

histograms IN and MOSTLY-IN marked in red; OUT and MOSTLY-OUT - green; MIXED

- blue; D2 − ratio histogram marked in orange

4.2. Global Radius-based Surface Descriptor

The Global Radius-based Surface Descriptor (GRSD) was described for the first time

in [18]. It is a global version of the Radius-based Surface Descriptor (RSD) [16, 17]

with some elements of the Global Fast Point Feature Histogram (GFPFH) [30] and

the Speeded Up Robust Feature (SURF) method [2]. The GRSD describes the radial

relationships of the points with their neighborhood. To explain the algorithm of the

descriptor, the local RSD must be described.

RSD is created in the following way: for each pair of point and its neighbor, the

distance between them and the difference between their normal vectors are calculated.

Then, a sphere is defined with these two points located on its surface. The normal

vectors calculated for the points have to be perpendicular to the sphere’s surface.

Note that, if the perpendicularity requirement is omitted, there is an infinite number

of spheres for each pair of points. Finally, the largest and smallest spheres are chosen,

and their radii are used to make a descriptor of the point. It can be observed that, if

both points lie on a curved surface of a cylinder, the radius of the generated sphere
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is approximately equal to the cylinder’s radius. If, in turn, the points lie on a plane,

the radius is infinitely long.

The algorithm of the GRSD calculation has two parameters: GRSDneighbors

- the number of points belonging to the local neighborhood used to estimate the

normal vectors, and GRSDrnp - the radius within which the neighboring points are

chosen. We performed the experiments of verifying the recognition rates depending

on the chosen parameters, which allowed us set the value of V FHneighbors to 45. We

observed that this value does not affect the results significantly if it is not too small

(below 20). The value of GRSDnrp was set to 4.5 mm according to the experiments.

The first step in calculating the GRSD is the surface categorization. The RSD

descriptors of the points determined in the previous step are used as an input of the

Conditional Random Field (CRF) algorithm [19], which assigns one of the following

labels to the point: plane, cylinder, sharp edge, or noise, rim, sphere. At this stage,

the point cloud has categorized each point depending on the type of object or certain

region to which the point belongs (see Fig. 4).

Figure 4. Surface categorization performed for each point in the two objects; different colors

represent the following categories: plane - yellow; cylinder - green; sharp edge or noise - red;

rim (boundary, transition between surfaces) - blue; sphere (not classified in the presented

point clouds); based on [16]

The next step is the generation of an octree - a hierarchic structure for storing

voxels, facilitating their compression and searching, and point cloud downsampling.

For each created voxel, the algorithm assigns the surface category that most likely

represents it. This is the category of the most commonly occurring points within the

voxel. Then, for each pair of voxels, a line connecting their center points is generated

(see Fig. 5). The next step is finding the voxels through which the line passes and

determining whether at least one point lies within them. Thus, intersection histogram

Hi is created, where i is the number of voxel pairs. The histogram assigns its category

number to each voxel (or 0 if the voxel is empty; i.e., contains no points [5]).

Calculated histograms Hi have variable lengths of horizontal axes. Based

on these, single global histogram Hg of a fixed length is created. Each bin of

Hg represents a different combination of transitions between the voxels of vari-

ous categories (including Category 0), whereby pairs 〈categoryA, categoryB〉 and

〈categoryB , categoryA〉 are equivalent. The bins of Hg are filled in by the values
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Figure 5. Calculation of GRSD descriptor shown on voxel grid; figure presents example line

connecting 2 voxels created based on point cloud; based on [30]

Figure 6. Example intersection histogram Hi: S is starting point; E - ending point

of the particular transitions present in each Hi. The size of Hg is equal to the number

of two-element combinations with repetitions from the GRSDnc-element set, where

GRSDnc is the number of surface categories including Category 0 (of empty voxels):

(nc + 2) · (nc + 1)/2. For GRSDnc = 6, this number is equal to 21; thus, GRSD is

represented by histogram Hg consisting of 21 bins.

To illustrate the effects of the GRSD descriptor, we show the histograms calcu-

lated for two different hand postures in Fig. 7.

We propose a modification of the descriptor in which there are no 21-element

histograms Hg based on transition combinations. Instead, we use histograms Hgc of

a size equal to GRSDnc that are based only on the surface categories; i.e., each bin

represents the number of voxels of a particular category (omitting the category of

empty voxels).
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Figure 7. GRSD histograms generated for all point clouds representing two hand postures

If the set of categories is properly chosen, the modified descriptor (called GRSD-

C – the ”C” stands for categorization) is more effective than the standard GRSD in

terms of recognition rates. Such a modification also decreases the number of features

(histograms have smaller sizes) as well as the number of operations that the algorithm

needs to calculate the features, and the method is simpler to implement. In Section

5, we present the results of the experiments verifying the recognition rates using the

original and modified version of the GRSD for various sets of categories.

4.3. Feature vectors

The single ESF features consist of three histograms of a size equal to 64 bins. To avoid

problems with high dimensionality, the histograms are represented by their mean and

standard deviation. Then, these values are normalized by scaling them to a range

of [0-1] using the minimum and maximum value of each feature from a training set.

Finally, the feature values are saved to the feature vector. The GRSD descriptor

consists of only one histogram of a size equal to 21 bins, while the histogram of

its modified version (GRSD-C) has 2 to 5 bins. In this case, the experiments were

performed for both the whole histograms (where the single bin values were the feature

vector values) and its representation by mean and standard deviation.

The size of a feature vector, called FVsize, is calculated as follows:

FVsize = nc ·
nf∑
i=i

nhi · nri (1)

where:
• nc - number of cells to which bounding box is divided;

• nf - number of descriptor features (e.g., two features if GRSD-C and D2 of ESF2

are used);

• nhi - number of histograms of i-th feature;

• nri - number of values representing histograms of i-th feature (value is equal to

2 in case of histograms represented as mean and standard deviation).
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For example, if the feature vector consists of one ESF and one GRSD feature (for the

case of representing histograms by each of their bins; i.e., without calculation of the

mean and standard deviation), the feature vector size is equal to 3 ·((3 ·2)+(1 ·21)) =

81. It is worth noting that having a feature vector that is too large is disadvantageous

in terms of classifier learning speed, the curse of dimensionality problem, or in the

case of some classifiers, the classification speed. Fig. 8 presents the example feature

vector of ESF2 feature D2 and its sub-histograms generated for all three horizontal

cells of the point cloud bounding box.

Figure 8. Feature vector with three sub-histograms of ESF2 D2 feature calculated for three

horizontal cells of example hand posture point cloud; sub-histograms are represented by

mean m and standard deviation sd

5. Experiments

The experiments were carried out using four datasets. The first dataset was recorded

by the author with the help of two people. This is described in [9] and publicly

available at http://vision.kia.prz.edu.pl/statictof.php. Denoted as DSW , the dataset

includes 16 hand postures performed 20 times by 3 people, which is 960 executions in

total. The hand postures are letters of the Polish finger alphabet that are represented

with static gestures (A, B, C, E, I, L, M, N, O, P, R, S, T, U, W, and Y). Distinguishing

between some letters of this alphabet is challenging. For example, the postures for

the letters O, S, and T differ only in slight shifts of the index finger in relation to

the thumb. The gestures were recorded using a MESA SR4000 camera and were

performed with the hands facing upwards.

The second dataset (denoted as DSR) was first described in [27] and is available at

http://eeeweba.ntu.edu.sg/computervision/people/home/renzhou/HandGesture.htm.

The dataset includes 10 hand postures performed 10 times by 10 people, which is

1000 executions in total. The gestures were recorded using a Kinect camera and

were performed with a quite variable orientation around the z axis (coinciding with

the camera’s optical axis) differing up to about 135 degrees.
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The third dataset (denoted as DSD) was introduced in [14, 15] and is available at

http://lttm.dei.unipd.it/downloads/gesture. It includes 10 hand postures performed

10 times by 14 people, which is 1400 executions in total. The hand postures are

letters of the American finger alphabet (A, D, I, L, V, W, and Y), digits (5 and 7),

and one additional posture - the inner side of the hand with extended little finger,

index finger, and thumb. The gestures were performed with a variable orientation

around all axes (x, y, z). Therefore, some postures related to the same gesture class

differ significantly, even for a human. The gestures were recorded by Kinect and Leap

Motion (skeletal data) cameras; however, in this work, only the depth data acquired

from Kinect was used.

The last dataset (denoted as DSP ) was first described in [24] and is available at

http://empslocal.ex.ac.uk/people/staff/np331/index.php?section=FingerSpellingDat

aset. It includes 24 hand postures performed a variable number of times (around 550)

by 5 people, which amounted to 64,749 executions in total. The subsequent gesture

executions are the video file frames that differ from neighboring frames only a little;

therefore, there are many similar executions in the dataset. The experiments using

such a large dataset are very time-consuming; therefore, we had to reduce it. We

used the fact of the similarity of neighboring gesture executions to remove redundant

data by choosing only 100 files that were divisible by 4 for each person and gesture

(starting at file number 100). The offset from the beginning was caused by accidentally

captured head images (without a visible hand) or incorrect hand postures present in

the first files in some cases. Thus, the modified dataset includes 12,000 files. The

hand postures are all of the letters of the American finger alphabet except J and Z

(because they involve motion). The gestures were recorded by the Kinect camera.

The depth maps are preprocessed in a way that only those fragments containing a

hand and, in some cases, a part of a forearm are visible. Thus, the depth maps have

a variable resolution. Hand segmentation was necessary, however, because the depth

data in small fragments around a hand contained background objects, and the visible

forearm parts are relatively long in some cases. DSP is the most challenging of the

four considered datasets because of its large number of gesture classes and variable

hand orientations, which are similar to the DSD dataset.

It should be mentioned that the gestures from all of the used datasets were

performed on a non-uniform and often cluttered background. In some cases in the

DSP dataset, the head of the person performing the gestures was visible on the

background of the hand.

The experiments with the ZDW and DSP datasets was performed using the

segmentation method of “gesticulation area,” while in the case of DSR and DSD,

“precise segmentation” was used. We used the method of “gesticulation area” because

the DSW and DSP datasets do not meet the following requirements of the ‘precise

segmentation” method: the DSW dataset was recorded by the MESA SR4000 camera,

which provides data with insufficiently accurate depth; in some executions of DSP ,

the forearm parts are not visible.
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In the experiments, we used 5-fold cross-validation tests for which a training

subset consisted of 80% of the executions and a testing subset accounted for 20% of

the executions in each test. The results of all five tests are presented as a single mean

value. In each experiment in which the ESF or ESF2 features were used, the cross-

validation tests were repeated 30 times; their mean and standard deviation values are

shown (separated by slashes in the tables). The cause of the test repetition is the fact

that the ESF descriptor is nondeterministic - this is also true for ESF2; therefore, the

repeated experiments using the same data, methods, and parameters can be different.

Table 1 compares the recognition rates of the single features of ESF and ESF2.

The results show that every feature of ESF2 save D2− ratio are more effective than

their counterparts from ESF in posture recognition. The worse result for D2− ratio

(that is, the least effective feature in both ESF versions) can be explained by the

fact that it is related to the ratios of the lengths of the line fragments present in

the MIXED sub-histogram of the D2 feature, and this histogram takes fewer values

than ESF to increase the number of values in the other two sub-histograms.

Table 1

Comparison of recognition rates for single features of original ESF descriptor and its modified

version - ESF2

Feature Recognition rate/standard Feature

deviation [%]
vector

size

DSW DSR DSD DSP mean

ESF(A3) 61.1/1.65 82.7/0.96 51.3/1.23 49/0.52 61 18

ESF(D3) 42.8/1.78 74.2/1.27 50.3/0.9 43.3/0.6 52.7 18

ESF(D2) 69.9/0.77 83.3/0.58 47.6/0.55 51.1/0.24 63 18

ESF(D2 −
ratio)

68.1/0.44 65.7/0.34 43/0.47 32.1/0.13 52.2 6

ESF2(A3) 80.9/0.68 90.1/0.61 65.9/0.52 61.8/0.31 74.7 18

ESF2(D3) 63.4/1.2 84/0.65 54.5/0.44 52/0.58 63.5 18

ESF2(D2) 81.4/0.87 86.3/0.51 57.3/0.45 57.8/0.17 70.7 18

ESF2

(D2 − ratio)
57.7/0.79 63.8/0.58 35.2/0.71 32.3/0.21 47.3 6

Table 2 compares the recognition rates of the original GRSD descriptor and its

modified version - GRSD-C. For the original GRSD, two results are shown. The first

is the case of those feature vectors consisting of all 21 bins of the GRSD histogram.

In the second case, the feature vectors containing the mean and standard deviations

were used. The first variant turned out to be more accurate, with a difference of

11.6%. For the GRSD-C descriptor, the results are presented for three cases differing

in the number of categories. The experiments started from all five categories proposed

in the original GRSD method. Then, we tried to connect particular categories that,

when used independently, do not improve the results (and even make them worse in
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certain cases). As a result, we used the following sets of categories:

Five categories - GRSD-C(5 cat.):

1. Plane

2. Cylinder

3. Sharp edge or noise

4. Rim

5. Sphere

Three categories - GRSD-C(3 cat.):

1. Plane, cylinder, or rim

2. Sharp edge or noise

3. Sphere

Two categories - GRSD-C(2 cat.):

1. Plane, cylinder, rim, or sphere

2. Sharp edge or noise

Such a composed set of categories result in improved classification rates as related

to the first variant of the original GRSD averaged for all sets with a difference of 4.8%.

Note that the feature vectors have significantly smaller sizes for GRSD-C(2 cat.). In

the case of the second GRSD variant with the same feature vector size (6 values), the

result for the proposed GRSD-C is higher by 16.4%. Analyzing the results for the

particular datasets, it can be seen that GRSD-C(2 cat.) is not the most effective in

all cases. For the DSD dataset, the best is variant GRSD-C(3 cat.), while for DSP ,

the best is variant GRSD-C(5 cat.). However, for each dataset, at least one of the

GRSD-C variants is better than both variants from the original GRSD. These results

led to the conclusion that the GRSD-C modified descriptor is more accurate in the

problem of posture recognition than its original version.

In Table 3, we present the results obtained for feature vectors composed from

both ESF and GRSD as well as their modified versions. For ESF and ESF2, only

the two most effective features (in terms of the recognition rate presented in Table

1) were used, because we observed that adding other features does not improve the

results (or improves them only slightly). In the case of the original GRSD, there are

two results related to both feature representations. For GRSD-C, only the best set of

categories were used. The average results for the modified descriptors are greater by

about 14% than those for their original versions.

In all of the previously described experiments in which either ESF or ESF2 was

used, the ESFn parameter (algorithm iteration number) was set to 20,000. The value

of this parameter significantly affects the processing time of the algorithm (it is more

or less proportional); therefore, we decided to determine its impact on the recognition

rate. An experiment was conducted in which the ESFn value was decreased down to

1000 with steps equal to 1000; for each value, the validation tests on the DSR dataset

were performed using all of the ESF2 features. The experiment results are shown

in Fig. 9. A downward trend can be observed starting from value 5000; however, a



Ea
rly
bi
rd

130 Dawid Warcho l

Table 2

Comparison of recognition rates of original GRSD descriptor and its modified version -

GRSD-C

Descriptor Recognition rate [%] Feature

vector

size

DSW DSR DSD DSP mean

GRSD(entire

histogram)
61.5 69.5 52.6 46.7 57.6 63

GRSD(mean

and st. dev.

of histogram)

58.4 56.1 38.7 30.7 46 6

GRSD-C (5

cat.)
66.8 57.2 48.4 48.4 55.2 15

GRSD-C (3

cat.)
73.5 65.8 58.5 47.9 61.4 9

GRSD-C (2

cat.)
78.9 70.8 54.1 45.8 62.4 6

Table 3

Comparison of recognition rates for feature vectors, including original ESF and GRSD des-

criptors and their modified versions

Features Recognition rate/standard Feature

deviation [%]
vector

size

DSW DSR DSD DSP mean

ESF2(A3,

D2), GRSD-

C(2-cat.)

89.8/0.48 92.1/0.52 72.7/0.33 68.9/0.25 80.9 42

ESF(A3, D2),

GRSD-

C(entire

histogram)

69.8/0.14 84.9/0.73 56.9/0.1 55.6/0.1 66.8 99

ESF(A3, D2),

GRSD(mean

and st. dev.

of histogram)

71.3/1.51 88/1.17 54.5/0.85 55.8/0.18 67.4 42

deterioration of the results greater than 0.5% (in relation to the default ESFN value)

can be seen for values less than or equal to 3000. In the DSR dataset, the hands

were shown at a distance of about 80 cm from the camera. The average number of

cloud points for this dataset is equal to 790 after noise removal and downsampling.

Therefore, based on the results of the experiments, we postulate the following: in the
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problem of hand posture recognition, if the hands are shown at a distance of about

80 cm from the camera and the point clouds are downsampled, the ESFn value can

be decreased from 20,000 to 4000 without a significant reduction in the recognition

rate. In this case, the calculation of the descriptor values is approximately five times

shorter: 42.33 ms for ESFn = 20000 and 8.76 ms for ESFn = 4000 (on a laptop with

an Intel Core i7-4710HQ and a 2.5 GHz CPU).

Figure 9. Recognition rates (in [%] on vertical axis) obtained using DSR dataset depending

on ESFn parameter value (horizontal axis)

To show what kind of postures are easy and difficult to recognize by our met-

hod, we present example color images representing the hand shapes from each class

recorded during the depth-data acquisition of the DSR dataset in Fig. 10. We also

show the confusion matrix for the cross-validation tests performed using feature sets

ESF2(A3, D2) and GRSD-C(2-cat.) on the DSR dataset in fig. 11. The most misclas-

sifications were related to Gesture G7, which was mistaken for G8 12 times. There

is a similarity between these postures, as there is an extended thumb and another

extended finger in both. Also, Gesture G10 was mistaken for G9 nine times, which is

interesting because a thumb and two fingers are extended in G10 while only a thumb

is extended in G9. Misclassifications of G10 with G9 may result from the fact that

these two postures are the only ones featuring a visible external hand side.

Figure 10. Example DSR postures from each class
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Figure 11. Confusion matrix obtained for cross-validation tests on DSR dataset using feature

sets ESF2(A3, D2) and GRSD-C(2-cat.)

The proposed recognition method using the GRSD-C and ESF2 descriptors alone

with no other features yields good results. However, such an algorithm does not

outperform the most accurate methods found in the literature. Therefore, we propose

to combine GRSD-C’s and ESF2’s most effective features and configurations with the

Viewpoint Feature Histogram (VFH) descriptor used in our previous works [9, 36] for

hand-gesture recognition.
Table 4

Comparison between recognition rates of our method using VFH(all features), ESF2(A3),

GRSD-C(2-cat.), and algorithms found in literature; experiments were performed using 5-

fold cross-validation tests and DSp dataset

Method Recognition rate [%]

Keskin et al. [10] 43

Pugeault et al. [24] 49

Pedersoli et al. [22] 56

Kuznetsova et al. [11] 57

Wang et al. [35] 58.3

Dalal et al. [3, 6] 65.4

Dong et al. [5] 70

Zhang et al. [40] 73.3

our method - k-nearest neighbor

classifier
74.8

Wang et al. [34] 75.8

Feng et al. [6] 78.7

our method - SVM classifier 79.6
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In Table 4, we present a comparison of the developed method and feature sets

VFH(all features), ESF2(A3), and GRSD-C(2-cat.) with the results found in the

literature. The methods of every cited work were tested using 5-fold cross-validation

performed on the DSp dataset. These tests are person-independent, which means that

no person from the testing set is present in the training set. In this experiment, we did

not merely choose those files divisible by 4 to reduce the dataset because we wanted

a reliable comparison with the other methods. Two results of our method are presen-

ted: the first was obtained using the k-nearest neighbor classifier as in the previous

experiments, and in the second case, we used the SVM classifier with all-versus-all

multi-class classification. The version of our method with the KNN classifier yielded

relatively good results, and the second version using the SVM classifier outperformed

each of the other compared methods.

6. Conclusions

In this paper, we presented an approach for the recognition of static hand gestures

based on 3D data and point cloud descriptors: Ensemble of Shape Functions and

Global Radius-based Surface Descriptor. We proposed modifications of these des-

criptors, which include the following: (i) replacing transition-based histograms with

category-based histograms of the GRSD; (ii) replacing IN and OUT sub-histograms

with MOSTLY-IN and MOSTLY-OUT sub-histograms of the ESF descriptor; (iii) re-

placing a constant value determining the iteration number with the ESFn parameter

that can be adjusted to shorten the computational time of the descriptor calculation

method. These modifications increased hand posture recognition rates and decreased

the quantity of the used features as well as the computational cost of the algorithms,

which was proven by the experiments performed using four challenging publicly avai-

lable datasets and cross-validation tests.

Future work related to this subject may be adapting the proposed recognition

method and modified descriptors in the problem of static hand posture sequence

recognition. Such a method may be helpful in developing a system for the recognition

of finger-spelled words.
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