PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu integrals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyzes the most commonly used operators of the Riemann-Liouville, the Caputo-Fabrizio, and the Atangana-Baleanu integral operators. Firstly, a numerical scheme for the Riemann-Liouville fractional integral has been discussed. Then, two numerical techniques have been suggested for the remaining two operators. The experimental order of convergence for the schemes is further supported by the computations of absolute relative error at the final nodal point over the integration interval [0, T ]. Comparative analysis of the integrals reveals that the Riemann-Liouville fractional integral yields the most minor errors and the most significant experimental order of convergence in the majority of functions, particularly when the fractional-order parameter α → 0. It is worth noting that the Atangana-Baleanu has proved to be an essential operator for solving many dynamical systems that a single RL operator cannot handle. All of the three integral operators coincide with each other for α = 1. Mathematica 11.3 for an Intel(R) Core(TM) i3-4500U procesor running on 1.70 GHz is used to carry out all the necessary computations.
Rocznik
Strony
91--101
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
  • Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
  • Department of Mathematics, Near East University TRCN, Mersin 10, Turkey
Bibliografia
  • [1] Jaradat, I., Al-Dolat, M., Al-Zoubi, K., & Alquran, M. (2018). Theory and applications of a more general form for fractional power series expansion. Chaos, Solitons & Fractals, 108, 107-110.
  • [2] Alquran, M., & Jaradat, I. (2018). A novel scheme for solving Caputo time-fractional nonlinear equations: theory and application. Nonlinear Dynamics, 91(4), 2389-2395.
  • [3] Alquran, M., Yousef, F., Alquran, F., Sulaiman, T.A., & Yusuf, A. (2021). Dual-wave solutions for the quadratic-cubic conformable-Caputo time-fractional Klein-Fock-Gordon equation. Mathematics and Computers in Simulation, 185, 62-76.
  • [4] Alquran, M., Al-Khaled, K., Sivasundaram, S., & Jaradat, H.M. (2017). Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation. Nonlinear Studies, 24(1), 235-244.
  • [5] Yusuf, A., Qureshi, S., Inc, M., Aliyu, A.I., Baleanu, D., & Shaikh, A.A. (2018). Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(12), 123121.
  • [6] Zhang, L., Rahman, M.U., Ahmad, S., Riaz, M.B., & Jarad, F. (2022). Dynamics of fractional order delay model of coronavirus disease. AIMS Mathematics, 7(3), 4211-4232.
  • [7] Ur Rahman, M., Arfan, M., Shah, K., & Gómez-Aguilar, J.F. (2020). Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy Caputo, random and ABC fractional order derivative. Chaos, Solitons & Fractals, 140, 110232.
  • [8] Yusuf, A., Qureshi, S., & Shah, S.F. (2020). Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators. Chaos, Solitons & Fractals, 132, 109552.
  • [9] Rahman, M.U., Arfan, M., Deebani, W., Kumam, P., & Shah, Z. (2021). Analysis of time-fractional Kawahara equation under Mittag-Leffler power law. Fractals, 2240021.
  • [10] Ur Rahman, M., Arfan, M., Shah, K., & Gómez-Aguilar, J.F. (2020). Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy Caputo, random and ABC fractional order derivative. Chaos, Solitons & Fractals, 140, 110232.
  • [11] Ur Rahman, M., Arfan, M., Shah, Z., & Alzahrani, E. (2021). Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives. Physica Scripta, 96(11), 115203.
  • [12] Qureshi, S. (2021). Fox H-functions as exact solutions for Caputo type mass spring damper system under Sumudu transform. Journal of Applied Mathematics and Computational Mechanics, 20(1), 83-89.
  • [13] Abro, K.A., Qureshi, S., & Atangana, A. (2020). Mathematical and numerical optimality of non-singular fractional approaches on free and forced linear oscillator. Nonlinear Engineering, 9(1), 449-456.
  • [14] Qureshi, S. (2021). Fox H-functions as exact solutions for Caputo type mass spring damper system under Sumudu transform. Journal of Applied Mathematics and Computational Mechanics, 20(1), 83-89.
  • [15] Qureshi, S., Chang, M.M., & Shaikh, A.A. (2021). Analysis of series RL and RC circuits with time-invariant source using truncated M, Atangana beta and conformable derivatives. Journal of Ocean Engineering and Science, 6(3), 217-227.
  • [16] Kulish, V.V., & Lage, J.L. (2002). Application of fractional calculus to fluid mechanics. Journal of Fluids Engineering, 124(3), 803-806.
  • [17] Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media.
  • [18] Lopes, A.M., & Machado, J.T. (2014). Fractional order models of leaves. Journal of Vibration and Control, 20(7), 998-1008.
  • [19] Lopes, A.M., Machado, J.T., & Ramalho, E. (2017). On the fractional-order modeling of wine. European Food Research and Technology, 243(6), 921-929.
  • [20] Biswas, K., Bohannan, G., Caponetto, R., Lopes, A.M., & Machado, J.A.T. (2017). Fractional-order models of vegetable tissues. Fractional-Order Devices, 73-92. DOI: 10.1007/978−3−319−54460−14.
  • [21] Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl., 1(2), 1-13.
  • [22] Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Science, 20, 2, 763-769. DOI: 10.2298/TSCI160111018A.
  • [23] Li, C., & Zeng, F. (2019). Numerical Methods for Fractional Calculus. Chapman and Hall/CRC.
  • [24] Diethelm, K., Ford, N.J., & Freed, A.D. (2004). Detailed error analysis for a fractional Adams method. Numerical Algorithms, 36(1), 31-52.
  • [25] Burden, R.L., & Faires, J.D. (1997). Numerical Analysis. Cole, Belmont.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d6a3a1c-cc16-4531-9378-7da0e25f8741
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.