PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crack analysis in bimaterial interfaces using T-spline based XIGA

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis-suitable T-splines are used for the modeling and analyzing of cracks in bimaterial interfaces within the framework of an extended isogeometric analysis (XIGA). The crack tip enrichment functions of bimaterial interface cracks are implemented to reproduce singular fields, and the signed distance functions are used to treat the crack face and the interface in the models. A compatible local refinement algorithm is applied to refine location of the crack and the interface, which helps one to avoid produce excessive propagation of control points. The mixed mode stress intensity factors (SIFs) which are evaluated by the interaction integral (M-integral) are used as analysis parameters. Numerical simulations are performed to analyze the problem and to examine the efficiency of the proposed method. The obtained results are compared with other available results.
Rocznik
Strony
55--68
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • University of M’hamed Bougara, Department of Mechanical Engineering, Boumerdes, Algeria
autor
  • University of M’hamed Bougara, Department of Mechanical Engineering, Boumerdes, Algeria
Bibliografia
  • 1. An X., Zhao Z., Zhang H., He L., 2013,Modeling bimaterial interface cracks using the numerical manifold method, Engineering Analysis with Boundary Elements, 37, 464-474
  • 2. Anders D., Weinberg K., Reichardt R., 2012, Isogeometric analysis of thermal diffusion in binary blends, Computational Materials Science, 52, 182-188
  • 3. Bazilevs Y., Akkerman I., 2010, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, Journal of Computational Physics, 229, 3402-3414
  • 4. Bazilevs Y., Calo V., Zhang Y., Hughes T.J., 2006, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Computational Mechanics, 38, 310-322
  • 5. Belytschko T., Gracie R., 2007, On XFEM applications to dislocations and interfaces, International Journal of Plasticity, 23, 1721-1738
  • 6. Benson D., Bazilevs Y., De Luycker E., Hsu M.C., Scott M., Hughes T., Belytschko, T., 2010, A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, International Journal for Numerical Methods in Engineering, 83, 765-785
  • 7. Bhardwaj, G., Singh, I., 2015, Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using extended isogeometric analysis, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1065-1082
  • 8. Bhardwaj G., Singh I., Mishra B., 2015a, Fatigue crack growth in functionally graded material using homogenized XIGA, Composite Structures, 134, 269-284
  • 9. Bhardwaj G., Singh I., Mishra B., 2015b, Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA, Computer Methods in Applied Mechanics and Engineering, 284, 186-229
  • 10. Bhardwaj G., Singh I., Mishra B., Bui T., 2015c, Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions, Composite Structures, 126, 347-359
  • 11. Borden M.J., Verhoosel C.V., Scott M.A., Hughes T.J., Landis C.M., 2012, A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, 217, 77-95
  • 12. Buffa A., Sangalli G., V´azquez R., 2010, Isogeometric analysis in electromagnetics: B-splines approximation, Computer Methods in Applied Mechanics and Engineering, 199, 1143-1152
  • 13. De Luycker, E., Benson D., Belytschko T., Bazilevs Y., Hsu M., 2011, X-FEM in isogeometric analysis for linear fracture mechanics, International Journal for Numerical Methods in Engineering, 87, 541-565
  • 14. Erdogan F., 1963, Stress distribution in a nonhomogeneous elastic plane with cracks, Journal of Applied Mechanics, 30, 232-236
  • 15. Evans J.A., Hughes T.J., 2013, Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Mathematical Models and Methods in Applied Sciences, 23, 1421-1478
  • 16. Evans A.G., R¨uhle M., Dalgleish B.J., Charalambides P.G., 1990, The fracture energy of bimaterial interfaces, Metallurgical Transactions A, 21, 2419-2429
  • 17. Ghorashi S.S., Mohammadi S., Sabbagh-Yazdi, S.-R., 2011, Orthotropic enriched element free Galerkin method for fracture analysis of composites, Engineering Fracture Mechanics, 78, 1906-1927
  • 18. Ghorashi S.S., Valizadeh N., Mohammadi S., 2012, Extended isogeometric analysis for simulation of stationary and propagating cracks, International Journal for Numerical Methods in Engineering, 89, 1069-1101
  • 19. Ghorashi S.S., Valizadeh N., Mohammadi S., Rabczuk T., 2015, T-spline based XIGA for fracture analysis of orthotropic media, Composite Structures, 147, 138-146
  • 20. Hsu M.-C., Akkerman I., Bazilevs Y., 2011, High-performance computing of wind turbine aerodynamics using isogeometric analysis, Computers and Fluids, 49, 93-100
  • 21. Hughes T.J., Cottrell J.A., Bazilevs Y., 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195
  • 22. Hutchinson J.W., Mear M., Rice J.R., 1987, Crack paralleling an interface between dissimilar materials, Journal of Applied Mechanics, 54, 828-832
  • 23. Ikeda T., Nagai M., Yamanaga K., Miyazaki N., 2006, Stress intensity factor analyses of interface cracks between dissimilar anisotropic materials using the finite element method, Engineering Fracture Mechanics, 73, 2067-2079
  • 24. Jia Y., Anitescu C., Ghorashi S.S., Rabczuk T., 2015, Extended isogeometric analysis for material interface problems, IMA Journal of Applied Mathematics, 80, 608-633
  • 25. Kalali A.T., Hassani B., Hadidi-Moud S., 2016, Elastic-plastic analysis of pressure vessels and rotating disks made of functionally graded materials using the isogeometric approach, Journal of Theoretical and Applied Mechanics, 54, 113-125
  • 26. Lee K.Y., Choi H.J., 1988, Boundary element analysis of stress intensity factors for biomaterial interface cracks, Engineering Fracture Mechanics, 29, 461-472
  • 27. Li X., Zheng J., Sederberg T.W., Hughes T.J., Scott M.A., 2012, On linear independence of T-spline blending functions, Computer Aided Geometric Design, 29, 63-76
  • 28. Liu X., Xiao Q.Z., Karihaloo B., 2004, XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials, International Journal for Numerical Methods in Engineering, 59, 1103-1118
  • 29. Matsumto T., Tanaka M., Obara R., 2000, Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis, Engineering Fracture Mechanics, 65, 683-702
  • 30. Miyazaki N., Ikeda T., Soda T., Munakata T., 1993, Stress intensity factor analysis of interface crack using boundary element methodapplication of contour-integral method, Engineering Fracture Mechanics, 45, 599-610
  • 31. Mo¨es N., Cloirec M., Cartraud P., Remacle J.-F., 2003, A computational approach to handle complex microstructure geometries, Computer Methods in Applied Mechanics and Engineering, 192, 3163-3177
  • 32. Nagashima T., Omoto Y., Tani S., 2003, Stress intensity factor analysis of interface cracks using X-FEM, International Journal for Numerical Methods in Engineering, 56, 1151-1173
  • 33. Nguyen V.P., Anitescu C., Bordas, S.P., Rabczuk T., 2015, Isogeometric analysis: An overview and computer implementation aspects, Mathematics and Computers in Simulation, 117, 89-116
  • 34. Nguyen V.P., Kerfriden P., Bordas S.P., 2014, Two-and three-dimensional isogeometric cohesive elements for composite delamination analysis, Composites Part B: Engineering, 60, 193-212
  • 35. Nguyen V.P., Nguyen-Xuan H., 2013, High-order B-splines based finite elements for delamination analysis of laminated composites, Composite Structures, 102, 261-275
  • 36. Pant M., Singh I., Mishra B., 2011, Evaluation of mixed mode stress intensity factors for interface cracks using EFGM, Applied Mathematical Modelling, 35, 3443-3459
  • 37. Peković O., Stupar S., Simonović A., Svorcan J., Trivković S., 2015, Free vibration and buckling analysis of higher order laminated composite plates using the isogeometric approach, Journal of Theoretical and Applied Mechanics, 53, 453-466
  • 38. Peng X., Atroshchenko E., Simpson R., Kulasegaram S., Bordas S., 2014, Crack growth analysis by a NURBS-based isogeometric boundary element method, 11th World Congress on Computational Mechanics, Barcelona, Spain
  • 39. Rice J., 1988, Elastic fracture mechanics concepts for interfacial cracks, Journal of Applied Mechanics, 55, 98-103
  • 40. Rice J., Sih G.C., 1965, Plane problems of cracks in dissimilar media, Journal of Applied Mechanics, 32, 418-423
  • 41. Scott M., Li X., Sederberg T., Hughes T., 2012, Local refinement of analysis-suitable Tsplines, Computer Methods in Applied Mechanics and Engineering, 213, 206-222
  • 42. Sederberg T.W., Cardon D.L., Finnigan G.T., North N.S., Zheng J., Lyche T., 2004, T-spline simplification and local refinement, ACM Transactions on Graphics (TOG), 23, 276-283
  • 43. Sederberg T.W., Zheng J., Bakenov A., Nasri A., 2003, T-splines and T-NURCCs, ACM Transactions on Graphics (TOG), 22, 477-484
  • 44. Sukumar N., Huang Z., Pr´evost J.H., Suo Z., 2004, Partition of unity enrichment for biomaterial interface cracks, International Journal for Numerical Methods in Engineering, 59, 1075-1102
  • 45. Sun C.T., Jih C., 1987, On strain energy release rates for interfacial cracks in bi-material media, Engineering Fracture Mechanics, 28, 13-20
  • 46. Tada H., Paris P., Irwin G., 2000, The Analysis of Cracks Handbook, ASME Press 2, 1, New York, USA
  • 47. Temizer I., Wriggers P., Hughes T., 2011, Contact treatment in isogeometric analysis with NURBS, Computer Methods in Applied Mechanics and Engineering, 200, 1100-1112
  • 48. Verhoosel C.V., Scott M.A., De Borst R., Hughes T.J., 2011, An isogeometric approach to cohesive zone modeling, International Journal for Numerical Methods in Engineering, 87, 336-360
  • 49. Williams M., 1959, The stresses around a fault or crack in dissimilar media, Bulletin of the Seismological Society of America, 49, 199-204
  • 50. Yau J., Wang S., 1984, An analysis of interface cracks between dissimilar isotropic materials using conservation integrals in elasticity, Engineering Fracture Mechanics, 20, 423-432
  • 51. Yuuki R., Xu J.-Q., 1994, Boundary element analysis of dissimilar materials and interface crack, Computational Mechanics, 14, 116-127
  • 52. Zhou Z., Xu X., Leung A.Y., Huang Y., 2013, Stress intensity factors and T-stress for an edge interface crack by symplectic expansion, Engineering Fracture Mechanics, 102, 334-347
  • 53. Zhou Z.H., Leung A.Y.T., Xu X.S., 2014, The finite element discretized symplectic method for interface cracks, Composites Part B: Engineering, 58, 335-342
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d661dec-2d4f-4716-8144-4c7f24773ef3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.