PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of coastal wave profiles at the sandy beaches of Nowshahr (Southern Caspian Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to investigate the capability of the one-dimensional (1D) mode of the Simulating WAves till SHore (SWASH), as a non-hydrostatic wave-flow model with six vertical layers, to reproduce the cross-shore wave evolution. For this purpose, the given model was initially calibrated for wave energy and the outputs were then verified with the field data measured at the Southern Caspian Sea. The calibration coefficients obtained for wave breaking are significantly less than the ones which have been mostly reported in previous studies for the two-dimensional (2D) mode of the SWASH. Although the reproduced wave height parameters are generally in good accordance with the field observations, the period parameters and the number of waves are overestimated and underestimated by the model, respectively. Moreover, the inaccuracies at the shallow stations are worse than at the transitional depths. The overestimation in both the reproduced energy of infragravity waves (IG) and their wavelength along with the underestimation in the wind-wave energy content are also among the factors responsible for the model deficiencies. The findings have revealed that the overestimation of the reproduced IG waves is the main reason for the underestimation of the breaking dissipation rate for irregular wave trains in the 1D mode. Therefore, more intensive breaking dissipation via selecting lower coefficient values is necessary to exhaust a certain energy content from longer waves in the 1D mode. This approach ultimately induces an over-dissipation of short wind-waves.
Czasopismo
Rocznik
Strony
457--472
Opis fizyczny
Bibliogr. 63 poz., map., rys., tab., wykr.
Twórcy
  • Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
Bibliografia
  • 1. Ardhuin, F., Rawat, A., Aucan, J., 2014. A numerical model for free infragravity waves: Definition and validation at regional and global scales. Ocean Model. 77, 20-32. https://doi.org/10.1016/j.ocemod.2014.02.006
  • 2. Battjes, J., Bakkenes, H., Janssen, T., Van Dongeren, A., 2004. Shoaling of subharmonic gravity waves. J. Geophys. Res. -Oceans 109. https://doi.org/10.1029/2003JC001863
  • 3. Battjes, J., Stive, M., 1985. Calibration and verification of a dissipation model for random breaking waves. J. Geophys. Res. -Oceans (1978-2012) 90, 9159-9167. https://doi.org/10.1029/JC090iC05p09159
  • 4. de Bakker, A., Brinkkemper, J., Van der Steen, F., Tissier, M., Ruessink, B., 2016a. Cross-shore sand transport by infragravity waves as a function of beach steepness. J. Geophys. Res. F: Earth Surf. 121, 1786-1799. https://doi.org/10.1002/2016JF003878
  • 5. de Bakker, A., Tissier, M., Ruessink, B., 2014. Shoreline dissipation of infragravity waves. Cont. Shelf Res. 72, 73-82. https://doi.org/10.1016/j.csr.2013.11.013
  • 6. de Bakker, A., Tissier, M., Ruessink, B., 2016b. Beach steepness effects on nonlinear infragravity-wave interactions: A numerical study. J. Geophys. Res. - Oceans 121, 554-570. https://doi.org/10.1002/2015JC011268
  • 7. de Vries, J.v.T., Van Gent, M., Walstra, D., Reniers, A., 2008. Analysis of dune erosion processes in large-scale flume experiments. Coast. Eng. 55, 1028-1040. https://doi.org/10.1016/j.coastaleng.2008.04.004
  • 8. Elgar, S., Herbers, T., Okihiro, M., Oltman-Shay, J., Guza, R., 1992. Observations of infragravity waves. J. Geophys. Res. 97, 15573-15577. https://doi.org/10.1029/92JC01316
  • 9. Gao, J., Ji, C., Gaidai, O., Liu, Y., Ma, X., 2017. Numerical investigation of transient harbor oscillations induced by N-waves. Coast. Eng. 125, 119-131. https://doi.org/10.1016/j.coastaleng.2017.03.004
  • 10. Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 170, 103977. https://doi.org/10.1016/j.coastaleng.2021.103977
  • 11. Gao, J., Ma, X., Zang, J., Dong, G., Ma, X., Zhu, Y., Zhou, L., 2020. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 158, 103670. https://doi.org/10.1016/j.coastaleng.2020.103670
  • 12. Gao, J., Zhou, X., Zhou, L., Zang, J., Chen, H., 2019. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor. Ocean Eng. 172, 86-95. https://doi.org/10.1016/j.oceaneng.2018.11.048
  • 13. González-Marco, D., Sierra, J.P., de Ybarra, O.F., Sánchez-Arcilla, A., 2008. Implications of long waves in harbor management: the Gijón port case study. Ocean Coast. Manage. 51, 180-201. https://doi.org/10.1016/j.ocecoaman.2007.04.001
  • 14. Guza, R., Thornton, E.B., 1985. Observations of surf beat. J. Geophys. Res. - Oceans 90, 3161-3172. https://doi.org/10.1029/JC090iC02p03161
  • 15. Guza, R.T., Thornton, E.B., 1982. Swash oscillations on a natural beach. J. Geophys. Res. - Oceans 87, 483-491. https://doi.org/10.1029/JC087iC01p00483
  • 16. Hasselmann, K., 1962. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 12, 481-500. https://doi.org/10.1017/S0022112062000373
  • 17. Herbers, T., Elgar, S., Guza, R., 1994. Infragravity-frequency (0.005—0.05 Hz) motions on the shelf. Part I: Forced Waves. J. Phys. Oceanogr. 24 (5), 917-927. https://doi.org/10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2
  • 18. Herbers, T., Elgar, S., Guza, R., O’Reilly, W., 1995. Infragravity-frequency (0.005—0.05 Hz) motions on the shelf. Part II: Free waves. J. Phys. Oceanogr. 25 (6), 1063-1079. https://doi.org/10.1175/1520-0485(1995)025<1063:IFHMOT>2.0.CO;2
  • 19. Hoefel, F., Elgar, S., 2003. Wave-induced sediment transport and sandbar migration. Science 299, 1885-1887. https://doi.org/10.1126/science.1081448
  • 20. Inch, K., Davidson, M., Masselink, G., Russell, P., 2017. Observations of nearshore infragravity wave dynamics under high Energy swell and wind-wave conditions. Cont. Shelf Res. 138, 19-31. https://doi.org/10.1016/j.csr.2017.02.010
  • 21. Komen, G., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P., 1994. Dynamics and Modelling of Ocean Waves Cambridge University Press, 532 pp. https://doi.org/10.1017/CBO9780511628955
  • 22. Lerma, A.N., Pedreros, R., Robinet, A., Sénéchal, N., 2017. Simulating wave setup and runup during storm conditions on a complex barred beach. Coast. Eng. 123, 29-41. https://doi.org/10.1016/j.coastaleng.2017.01.011
  • 23. Liang, B., Wu, G., Liu, F., Fan, H., Li, H., 2015. Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model. Oceanologia 57 (4), 308-317. https://doi.org/10.1016/j.oceano.2015.07.002
  • 24. Longuet-Higgins, M., Fox, M., 1977. Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80, 721-741. https://doi.org/10.1017/S0022112077002444
  • 25. Longuet-Higgins, M.S., Stewart, R., 1962. Radiation stress and mass transport in gravity waves, with application to ‘surfbeats. J. Fluid Mech. 13, 481-504. https://doi.org/10.1017/S0022112062000877
  • 26. Longuet-Higgins, M.S., Stewart, R., 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abstr. Elsevier, 529-562. https://doi.org/10.1016/0011-7471(64)90001-4
  • 27. Longuet-Higgins, M.S., 1970. Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res. 75, 6778-6789. https://doi.org/10.1029/JC075i033p06778
  • 28. Ma, G., Shi, F., Kirby, J.T., 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43, 22-35. https://doi.org/10.1016/j.ocemod.2011.12.002
  • 29. MacMahan, J.H., Thornton, E.B., Reniers, A.J., 2006. Rip current review. Coastal Eng. 53, 191-208. https://doi.org/10.1016/j.coastaleng.2005.10.009
  • 30. Madsen, P.A., Bingham, H., Liu, H., 2002. A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech. 462, 1-30. https://doi.org/10.1017/S0022112002008467
  • 31. Mahmoudof, S.M., 2018a. Investigation of Infragravity Waves Dependency on Wind Waves for Breaking and Nonbreaking Conditions in the Sandy Beaches of Southern Caspian Sea (Nowshahr Port). Int. J. Coastal Offsh. Eng. 1, 13-20. https://doi.org/10.29252/ijcoe.1.4.13
  • 32. Mahmoudof, M., 2018b. Study of Low and High Harmonic Energy Amplification Due to Outer Surf-zone Wave Breaking. J. Oceanogr. 9, 1-9. https://doi.org/10.29252/joc.9.34.1
  • 33. Mahmoudof, S.M., Azizpour, J., 2020. Field observation of wave reflection from plunging cliff coasts of Chabahar. App. Ocean Res. 95, 102029. https://doi.org/10.1016/j.apor.2019.102029
  • 34. Mahmoudof, S.M., Azizpour, J., Eyhavand-Koohzadi, A., 2021. Observation of infragravity wave processes near the coastal cliffs of Chabahar (Gulf of Oman). Estuarine Coast. Shelf Sci. 107226. https://doi.org/10.1016/j.ecss.2021.107226
  • 35. Mahmoudof, S.M., Badiei, P., Siadatmousavi, S.M., Chegini, V., 2016. Observing and estimating of intensive triad interaction occurrence in very shallow water. Cont. Shelf Res. 122, 68-76. https://doi.org/10.1016/j.csr.2016.04.003
  • 36. Mahmoudof, S.M., Badiei, P., Siadatmousavi, S.M., Chegini, V., 2018. Spectral Wave Modeling in Very Shallow Water at Southern Coast of Caspian Sea. J. Marine Sci. App. 17, 140-151. https://doi.org/10.1007/s11804-018-0011-y
  • 37. Mahmoudof, S.M., Siadatmousavi, S.M., 2020. Bound infragravity wave observations at the Nowshahr beaches, southern Caspian Sea. App. Ocean Res. 98, 102122. https://doi.org/10.1016/j.apor.2020.102122
  • 38. Masselink, G., 1998. Field investigation of wave propagation over a bar and the consequent generation of secondary waves. Coast. Eng. 33, 1-9. https://doi.org/10.1016/s0378-3839(97)00032-x
  • 39. Mendes, D., Pinto, J.P., Pires-Silva, A.A., Fortunato, A.B., 2018. Infragravity wave energy changes on a dissipative barred beach: A numerical study. Coast. Eng. 140, 136-146. https://doi.org/10.1016/j.coastaleng.2018.07.005
  • 40. Nwogu, O., 1993. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port C. 119, 618-638. https://doi.org/10.1061/(ASCE)0733-950X
  • 41. Reniers, A., Zijlema, M., 2022. SWAN SurfBeat-1D. Coast. Eng. 172, 104068. https://doi.org/10.1016/j.coastaleng.2021.104068
  • 42. Rijnsdorp, D.P., Ruessink, G., Zijlema, M., 2015. Infragravity-wave dynamics in a barred coastal region, a numerical study. J. Geophys. Res. Oceans 120, 4068-4089. https://doi.org/10.1002/2014JC010450
  • 43. Roelvink, D., Reniers, A., Van Dongeren, A., de Vries, J.v.T., McCall, R., Lescinski, J., 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
  • 44. Ruessink, B., 1998. The temporal and spatial variability of infragravity energy in a barred nearshore zone. Cont. Shelf Res. 18, 585-605. https://doi.org/10.1016/S0278-4343(97)00055-1
  • 45. Ruessink, B.G., Michallet, H., Bonneton, P., Mouazé, D., Lara, J., Silva, P.A., Wellens, P., 2013. Globex: wave dynamics on a gently sloping laboraty beach. Proc. Coast. Dyn. 2013, 1351-1362.
  • 46. Ruju, A., Lara, J.L., Losada, I.J., 2012. Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. Coast. Eng. 68, 44-55. https://doi.org/10.1016/j.coastaleng.2012.05.003
  • 47. Ruju, A., Lara, J.L., Losada, I.J., 2014. Numerical analysis of run-up oscillations under dissipative conditions. Coast. Eng. 86, 45-56. https://doi.org/10.1016/j.coastaleng.2014.01.010
  • 48. Sheremet, A., Guza, R., Elgar, S., Herbers, T., 2002. Observations of nearshore infragravity waves: Seaward and shoreward propa-gating components. J. Geophys. Res. - Oceans 107. https://doi.org/10.1029/2001JC000970
  • 49. Smit, P., Janssen, T., Holthuijsen, L., Smith, J., 2014. Non-hydrostatic modeling of surf zone wave dynamics. Coastal Eng. 83, 36-48. https://doi.org/10.1016/j.coastaleng.2013.09.005
  • 50. Smit, P., Zijlema, M., Stelling, G., 2013. Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Eng 76, 1-16. https://doi.org/10.1016/j.coastaleng.2013.01.008
  • 51. Stelling, G., Zijlema, M., 2003. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids 43, 1-23. https://doi.org/10.1002/fld.595
  • 52. Svendsen, I.A., 1984. Mass flux and undertow in a surf zone. Coast. Eng. 8, 347-365. https://doi.org/10.1016/0378-3839(84)90030-9
  • 53. Symonds, G., Huntley, D.A., Bowen, A.J., 1982. Two-dimensional surf beat: Long wave generation by a time-varying breakpoint. J. Geophys. Res. - Oceans 87, 492-498. https://doi.org/10.1029/JC087iC01p00492
  • 54. The Wamdi Group, 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 1775-1810. https://doi.org/10.1175/1520-0485
  • 55. Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T., Guza, R., 2006. Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophys. Res. Lett. 33. https://doi.org/10.1029/2005GL025514
  • 56. Torres-Freyermuth, A., Mariño-Tapia, I., Coronado, C., Salles, P., Medellín, G., Pedrozo-Acuña, A., Silva, R., Candela, J., Iglesias-Prieto, R., 2012. Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon. Nat. Hazard. Earth Sys. 12, 3765-3773. https://doi.org/10.5194/nhess-12-3765-2012
  • 57. Torres-Freyermuth, A., Losada, I.J., Lara, J.L., 2007. Modeling of surf zone processes on a natural beach using Reynolds-Averaged Navier-Stokes equations. J. Geophys. Res. – Oceans 112. https://doi.org/10.1029/2006JC004050
  • 58. Webb, S.C., Zhang, X., Crawford, W., 1991. Infragravity waves in the deep ocean. J. Geophys. Res. - Oceans 96, 2723-2736. https://doi.org/10.1029/90JC02212
  • 59. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R., 1995. A fully non-linear Boussinesq model for surface waves. Part 1. Highly non-linear unsteady waves. J. Fluid Mech. 294, 71-92. https://doi.org/10.1017/S0022112095002813
  • 60. Yamazaki, Y., Kowalik, Z., Cheung, K.F., 2009. Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int. J. Numer. Method. Fluids 61, 473-497. https://doi.org/10.1002/fld.1952
  • 61. Zhang, R., Stive, M.J., 2019. Numerical modelling of hydrodynamics of permeable pile groins using SWASH. Coast. Eng. 153, 103558. https://doi.org/10.1016/j.coastaleng.2019.103558
  • 62. Zheng, Z., Ma, X., Ma, Y., Huang, X., Dong, G., 2021. Modeling of coastal infragravity waves using the spectral model WAVE-WATCH III. Coast. Eng. 170, 104016. https://doi.org/10.1016/j.coastaleng.2021.104016
  • 63. Zijlema, M., Stelling, G., Smit, P., 2011. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 58, 992-1012. https://doi.org/10.1016/j.coastaleng.2011.05.015
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d60e698-1589-4c95-820d-f199c9610fad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.