PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of depth of surface layers constituted by vacuum technologies on pitting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the results of a study of the effect of vacuum technologies of formation of surface layers on pitting of associated elements in a lubricated, heavy-load rolling contact. Design/methodology/approach: Samples of 16MnCr5 vacuum-carburised steel, 100Cr6 bearing steel as well as elements of 100Cr6 steel with deposited coatings of titanium nitride (TiN) and chromium nitride (CrN) of various depths have been examined. The contact under examination was lubricated with RL 144 standard mineral oil with no additives. Findings: The study has shown that increase in a PVD coat depth is accompanied by decrease in the fatigue friction pair. Research limitations/implications: The elements after cutting-edge surface processing may have lower surface fatigue strength. It is one of the reasons for them not being used in lubricated friction parts of machines, especially high-performance ones. Originality/value: The study has shown a significant and varied effect on pitting of vacuum technologies of surface layer deposition in associated elements in concentrated rolling contact.
Rocznik
Strony
76--81
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Department of Materials and Welding Engineering, Faculty of Mechanical Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Institute for Sustainable Technologies - National Research Institute, ul. Pułaskiego 6/10, 26-600 Radom, Poland
autor
  • Institute for Sustainable Technologies - National Research Institute, ul. Pułaskiego 6/10, 26-600 Radom, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] S. Pytko, M. Szczerek, Pitting - a form of destruction of rolling elements, Tribology 4/5 (1993) 317-334.
  • [2] M. Szczerek, Methodological problems of systematisation of experimental tribological studies, Institute for Sustainable Technologies, Radom, 1996.
  • [3] P. Kula, R. Pietrasik, K. Dybowski, S. Paweta, E. Wołowiec, Properties of surface layers processed by a new, high-temperature vacuum carburizing technology with prenitriding - PreNitLPC, Advanced Materials Research 452-453 (2012) 401-406.
  • [4] M. Korecki, J. Olejnik, P. Kula, R. Pietrasik, E. Wołowiec, Multi-purpose LPC+LPN+HPGQ 25 bar N2/He single chamber vacuum furnaces, Proceedings of the Heat Treating Society Conference and Exposition ASM’2011, Cincinnati, 2011, 309-314.
  • [5] M. Kulka, A. Pertek, L. Klimek, The influence of carbon content in the borided Fe-alloys on themicrostructure of iron borides, Materials Characterization 56/3 (2006) 232-240.
  • [6] P. Kula, R. Pietrasik, E. Wołowiec, B. Januszewicz, A. Rzepkowski, Low-pressure nitriding according to the FineLPN technology in multi-purpose vacuum furnaces, Materials Advanced Research 586 (2012) 230-234.
  • [7] P. Kula, E. Wołowiec, R. Pietrasik, K. Dybowski, L. Klimek, The precipitation and dissolution of alloy iron carbides in vacuum carburization processes for automotive and aircraft applications - Part I, Materials Advanced Research 486 (2012) 297-302.
  • [8] P. Kula, E. Wołowiec, R. Pietrasik, K. Dybowski, L. Klimek, The precipitation and dissolution of alloy iron carbides in vacuum carburization processes for automotive and aircraft applications - Part II, Materials Advanced Research 486 (2012) 303-308.
  • [9] J.A. Smolik, The wear mechanism of hybrid layer „PN+CrN” during the hot forging process, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 215-223.
  • [10] M. Richert, A. Mazurkiewicz, J. Smolik, Chromium carbide coatings obtained by the hybrid PVD methods, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 145-152.
  • [11] T.P. Chang, H.S. Cheng, W.A. Chiou, W.D. Sproul, A comparison of fatigue failure morphology between TiN coated and uncoated lubricated rollers, Surface and Coating 34 (1991) 408-416.
  • [12] T.P. Chang, H.S. Cheng, The influence of coating thickness on lubricated rolling contact fatigue life, Surface and Coating 43/44 (1990) 699-708.
  • [13] I.A. Polonsky, T.P. Chang, L.M. Keer, W.D. Sproul, A study of rolling-contact fatigue of bearing steel coated with physical vapor deposition TiN films, Coating response to cyclic contact stress and physical mechanisms underlying coating effect on the fatigue life, Wear 215 (1998) 191-204.
  • [14] A. Erdemir, Rolling-contact fatigue resistance of hard coatings on bearing steels, Proceedings of the Joint Tribology Conference of the ASME/STLE, 1999, 1-24.
  • [15] K. Holmberg, A. Matthews, Coating Tribology, Elsevier, Amsterdam, 1994.
  • [16] I.A. Polonsky, T.P. Chang, L.M. Keer, W.D. Sproul, An analysis of the effect of hard coatings on near-surface rolling contact fatigue initiation induced by surface roughness, Wear 208 (1997) 204-219.
  • [17] M. Michalak, Z. Gawroński, Configuration of the carburisation process shown in an example of a bearing roller, Archives of Mechanical Technology and Automation 30/3 (2010) 87-97.
  • [18] R. Michalczewski, W. Piekoszewski, The Method for Assessment of Rolling Contact Fatigue of PVD/CVD Coated Elements in Lubricated Contacts, Journal of Tribology 25/4 (2006) 34-43.
  • [19] W. Tuszyński, R. Michalczewski, W. Piekoszewski, M. Szczerek; Effect of ageing automative gear oils on scuffing and pitting, Tribology International 41 (2008) 875-888.
  • [20] M. Libera, The effect of selected parameters of the surface layer on surface fatigue strength of rolling friction pairs, Ph.D. Thesis, Poznań University of Technology, 2001.
  • [21] A. Palmgren, Rolling bearings, Publishing House PWN, Warsaw, 1951.
  • [22] W. Waligóra, The surface layer of elements made of bearing steel and its surface fatigue strength, Tribology 2 (1993) 199-219.
  • [23] W. Waligóra, Spread of surface fatigue strength values for rolling bearings, Poznan University of Technology, Poznań, 2004.
  • [24] W. Waligóra, Surface fatigue strength of bearing steel subjected to laser processing, Poznan University of Technology, Poznań, 1994.
  • [25] Y. Wang, J.E. Fernandez, D.G. Cuervo, Rolling-contact fatigue lives of steel AISI 52100 balls with eight mineral and synthetic lubricants, Wear 196 (1996) 110-119.
  • [26] P. Kula, M. Korecki, R. Pietrasik, E. Wolowiec, K. Dybowski, Ł. Kolodziejczyk, R. Atraszkiewicz, M. Krasowski, FineCarb - the flexible system for low pressure carburizing. New options and performance, Journal of The Japan Society for Heat Treatment 49/1 (2009) 133-134.
  • [27] P. Kula, J. Olejnik, P. Heilman, U.S. Patent 7513958, 2009.
  • [28] P. Kula, R. Pietrasik, K. Dybowski, Vacuum carburizing-process optimization, Journal of Materials Processing Technology 164-165 (2005) 876-881.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d5ba660-0297-467a-a8d7-c828ededf43d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.