PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Crystal Density Prediction, Charge Density Distribution and the Explosive Properties of the Highly Energetic Molecule 2-Methyl-5-nitramino-tetrazole: a DFT and AIM Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ab initio crystal density, bond topological and explosive properties of the energetic molecule 2-methyl-5-nitraminotetrazole (MNAT) have been calculated by the MOLPAK/PMIN software and the AIM theory. The density predicted from the crystal structure simulation almost matches the experimental density. The geometrical parameters of the molecule lifted from the crystal structure are in very close agreement with the reported X-ray molecular structure. The bond topological analysis predicts a signifcantly low bond electron density, as well as a less Laplacian of electron density, for the N–NO2 bond. The Laplacian for the bond to the attached methyl group, the C(2)–N(2) bond, is also found to be less negative; the less negative values of the Laplacian confrms that these are the weakest bonds in the molecule. The impact sensitivity (h50) of the molecule has been calculated, and is almost equal to the reported experimental value. The sensitivity of the molecule was also estimated from the electrostatic imbalance parameter and has the value ν = 0.242. The isosurface of the electrostatic potential of the molecule displays a high negative electrostatic potential region around the tetrazole ring and the nitramine N–N bond, which are the possible reactive locations in the molecule.
Rocznik
Strony
53--68
Opis fizyczny
Bibliogr. 41 poz, rys., tab.
Twórcy
  • Department of Physics, Periyar University, Salem 636 011, India
  • Department of Physics, Periyar University, Salem 636 011, India
Bibliografia
  • [1] Sikder A.K., Sikder N., A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater., 2004, A112, 1-15.
  • [2] Nesprias K.R., Canizo A.I., Eyler N., Mateo C.M., Jorge N.L., Preparation and Thermal Decomposition Reaction of p-Chloro Benzaldehyde Diperoxide in Tetrahydrofuran Solution, J. Energ. Mater., 2007, 25, 69-78.
  • [3] Bulusu S.N., Chemistry and Physics of Energetic Materials, Kluwer Academic Publishers, Boston, MA, 1989.
  • [4] Cubero E., Orozco M., Luque F.J., Theoretical Study of Azidotetrazole Isomerism: Effect of Solvent and Substituents and Mechanism of Isomerization, J. Am. Chem. Soc., 1998, 120, 4723-4731.
  • [5] Klapötke T.M., Mayer P., Schulz A., Weigand J.J., 1,5-Diamino-4-methyltetrazolium Dinitramide, J. Am. Chem. Soc., 2005, 127, 2032-2033.
  • [6] Denffer M.V., Heeb G., Klapötke T.M., Kramer G., Spiess G., Welch J.M., Improved Synthesis and X-Ray Structure of 5-Aminotetrazolium Nitrate, Propellants Explos. Pyrotech., 2005, 30, 191-195.
  • [7] Klapötke T.M., Karaghiosoff K., Mayer P., Penger A., Welch J.M., Synthesis and Characterization of 1,4-Dimethyl-5-aminotetrazolium 5-Nitrotetrazolate, Propellants Explos. Pyrotech., 2006, 31, 188-195.
  • [8] Hammerl A., Klapötke T.M., Tetrazolylpentazoles: Nitrogen-Rich Compounds, Inorg. Chem., 2002, 41, 906-912.
  • [9] Ebespacher M., Klapötke T.M., Sabate C.M., Nitrogen-Rich Alkali Metal 5,5′-Hydrazinebistetrazolate Salts: Environmentally Friendly Compounds in Pyrotechnic Mixtures, New J. Chem., 2009, 33, 517.
  • [10] Klapötke T.M., Stierstorfer J., Wallek A.U., Nitrogen-Rich Salts of 1-Methyl-5-nitriminotetrazolate: An Auspicious Class of Thermally Stable Energetic Materials, Chem. Mater., 2008, 20, 4519-4530.
  • [11] Klapötke T.M., Mayer P., Verma V., Synthesis and Characterization of 1-Azido-2-nitro-2-azapropane and 1-Nitrotetrazolato-2-nitro-2-azapropane, Propellants Explos. Pyrotech., 2006, 31, 263-268.
  • [12] Klapötke T.M., Stierstofer J., Nitration Products of 5-Amino-1H-tetrazole and Methyl-5-amino-1H-tetrazoles – Structures and Properties of Promising Energetic Materials, Helvetica Chim. Acta, 2007, 90, 2132-2150.
  • [13] Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P., Advances in Science and Technology of Modern Energetic Materials: An Overview, J. Hazard. Mater., 2008, 151, 289-305.
  • [14] Ammon H.L., Du Z., Holden J.R., 9th Annual Working Group Institute on Synthesis of High Energy Density Proceedings, Kiamesha Lake, NY, 1990, 47-61
  • [15] David Stephen A., Srinivasan P., Kumaradhas P., Bond Charge Depletion, Bond Strength and the Impact Sensitivity of High Energetic 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Molecule: A Theoretical Charge Density Analysis, Comput. Theo Chem, 2011, 967, 250-256.
  • [16] David Stephen A., Pawar R.B., Kumaradhas P., Exploring the Bond Topological Properties and the Charge Depletion-Impact Sensitivity Relationship of High Energetic TNT Molecule via Theoretical Charge Density Analysis, J. Mol. Struct. (THEOCHEM), 2010, 959, 55-61.
  • [17] Su X., Cheng X., Meng C., Yuan X., Quantum Chemical Study on Nitroimidazole, Polynitroimidazole and Their Methyl Derivatives, J. Hazard. Mater., 2009, 161, 551-558.
  • [18] Bader R.F.W., Nguyen-Dang T.T., Quantum Theory of Atoms in Molecules – Dalton Revisited, Adv. Quantum Chem., 1981, 14, 63-124.
  • [19] Kamlet J.M., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-, H-, N-, O-, Explosives, U.S Naval Ordnance Laboratory, White oak, Silver Spring, Maryland, 1967.
  • [20] a) Holden J.R., Du Z., Amman H.L., Prediction of Possible Crystal Structures for C-, H-, N-, O-, and F-containing Organic Compounds, J. Comput. Chem., 1993, 14, 422-437; b) Cromer D.L., Amman H.L., Holden J.R., Report LA-11142-MS,Los Alamos National Laboratory, Los Alamos, NM, 1987.
  • [21] Ammon H.L., MOLPAK Software Suite and User’s Manual, July Version, University of Maryland, College Park, Maryland, 2007.
  • [22] Busing W.R., PMIN – A Computer Program to Model Molecules and Crystals in Terms of Potential Energy Functions, Report ORNL-5747, Oak Ridge National Laboratory, Oak Ridge, 1981.
  • [23] Prasad S.M., Du Z., Albu N., Ammon H.L., University of Maryland, College Park, MD, 2004.
  • [24] Perdew J.P., Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas, Phys. Rev. B, 1986, 33, 8822-8824.
  • [25] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery A.J., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham MA, Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, revision B.04. Gaussian Inc., Pittsburgh, PA, 2005.
  • [26] AIMAll (Version 10.03.25) Todd A. Keith (aim.tkgristmill.com), 2010.
  • [27] Volkov A., Macchi P., Farrugia L.J., Gatti C., Mallinson P., Richter T., Koritsanszky T., XD2006 − a Computer Program for Multipole Refnement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors, Version 5.33. State University of New York at Buffalo, NY; Universita´ di Milano, Italy; University of Glasgow, UK; CNR-ISTM Milano, Italy; Free University of Berlin, Germany, 2007.
  • [28] Gillespie R.J., Popelier P.L.A., Chemical Bonding and Molecular Geometry, Oxford University Press, New York, 2001.
  • [29] Hubschle C.B., Luger P., MolIso − a Program for Colour-Mapped Iso-Surfaces, J. Appl. Cryst., 2006, 39, 901-904.
  • [30] Bader R.F.W., Atoms in Molecules, Acc. Chem. Res., 1985, 18, 9-15.
  • [31] David Stephen A., Srinivasan P., Asthana S.N., Pawar R.B., Kumaradhas P., Crystal Structure Prediction and Charge Density Distribution of High Energetic Dimethylnitraminotetrazole: a First Step for the Design of High Energy Density Material, Cent. Eur. J. Energ. Mater., 2012, 9(3), 201-217.
  • [32] Cromer D.T., Storm C.B., Structure of 4,4’,5,5’-Tetranitro-2,2’-biimidazole Dehydrate, Acta Crystallogr., 1990, C46, 1957-1958.
  • [33] Cramer P., Kraka E., A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy, Croatica Chemica Acta, 1984, 57, 1259-1281.
  • [34] Chung G.S., Schimit M.W., Gordon M.S., An Ab Initio Study of Potential Energy Surfaces for N8 Isomers, J. Phys. Chem. A, 2000, 104, 5647-5650.
  • [35] Zhang C., Shu Y., Huang Y., Zhao X., Dong H., Investigation of Correlation between Impact Sensitivities and Nitro Group Charges in Nitro Compounds, J. Phys. Chem. B, 2005, 109, 8978-8982.
  • [36] Cao C., Gao S., Two Dominant Factors Infuencing the Impact Sensitivities of Nitrobenzenes and Saturated Nitro Compounds, J. Phys. Chem. B , 2007, 111, 12399-12402.
  • [37] Hui Liu., Hongchen Du., Guixiang Wang., Xuedong Gong., Theoretical Studies on the Structures, Densities, Detonation Properties and Pyrolysis Mechanism of Energetic Compounds Containing Pyridine Ring, Struct. Chem., 2012, 23, 479-486.
  • [38] Svensson L., Nyqvist J-O., Westling L., Crystallization Method for HMX and RDX, US 4638065, 1987.
  • [37] Ghule V.D., Sarangapani R., Jadhav P.M., Pandey R.K., Computational Design and Structure – Property Relationship Studies on Heptazines, J. Mol. Model., 2011, 17, 2927-2937.
  • [38] Gobel M., Karaghiosoff K., Klapotke T.M., Piercey D.G., Stierstorfer J., Nitrotetrazolate-2N-oxides and the Strategy of N-Oxide Introduction, J. Am. Chem. Soc., 2010, 132(48), 17216- 17226.
  • [39] Owens F.J., Jayasuriya K., Abrahamsen L., Politzer P., Computational Analysis of Some Properties Associated with the Nitro Groups in Polynitroaromatic Molecules, Chem. Phys. Lett., 1985, 116, 434-438.
  • [40] Felipe A.B., Toro-Labbe A., WgFA: A Suite of Programs to Analyse Wavefunctions, Unpublished Manuscript, 2010.
  • [41] Politzer P., Laurence P.R., Abrahmsen L., Zilles B.A., Sjoberg P., The Aromatic C–NO2-bond as a Site for Nucleophilic Attack, Chem. Phys. Lett., 1984, 111(1), 75-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d5b7509-3102-43f6-a312-3085e2efa43f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.