PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wavelength-sensitive-function-based spectral reconstruction using segmented principal component analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spectral images provide richer information than colorimetric images. A high-dimensional spectral data presents a challenge for efficient spectral reconstruction. In conventional reconstruction methods it is very difficult to obtain good spectral and colorimetric accuracy simultaneously. In this paper, a segmented principal component analysis (SPCA) method and a weighted segmented principal component analysis (wSPCA) method are proposed for efficient reconstruction of spectral color information. The methods require, firstly, partitioning the complete spectrum of wavelengths into two subgroups, considering the sensitivity of human visual system. Then the classical principal component analysis (PCA) carried out each subgroup of data separately. The results indicated that the spectral and colorimetric accuracy of the SPCA and wSPCA outperformed the PCA and weighted PCA, and wSPCA clearly retained more color visual information.
Czasopismo
Rocznik
Strony
365--374
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • College of Printing and Packaging Engineering, Qilu University of Technology, Jinan, 250353, China
  • College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai, 200093, China
autor
  • No. 18, Dahuisi Road, Beijing, 100081, China
autor
  • College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai, 200093, China
autor
  • College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai, 200093, China
Bibliografia
  • [1]VALERO E.M., YU HU, HERNÁNDEZ-ANDRÉS J., ECKHARD T., NIEVES J.L., ROMERO J., SCHNITZLEIN M., NOWACK D., Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection, Color Research and Application 39(1), 2014, pp. 16–27.
  • [2]DI-YUAN TZENG, BERNS R.S., A review of principal component analysis and its applications to color technology, Color Research and Application 30(2), 2005, pp. 84–98.
  • [3]HANEISHI H., HASEGAWA T., HOSOI A., YOKOYAMA Y., TSUMURA N., MIYAKE Y., System design for accurately estimating the spectral reflectance of art paintings, Applied Optics 39(35), 2000, pp. 6621–6632.
  • [4]XIUPING JIA, RICHARDS J.A., Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification, IEEE Transactions on Geoscience and Remote Sensing 37(1), 1999, pp. 538–542.
  • [5]BARAKZEHI M., AMIRSHAHI S.H., PEYVANDI S., AFJEH M.G., Reconstruction of total radiance spectra of fluorescent samples by means of nonlinear principal component analysis, Journal of the Optical Society of America A 30(9), 2013, pp. 1862–1870.
  • [6]COHEN J., Dependency of the spectral reflectance curves of the Munsell color chips, Psychonomic Science 1(1–12), 1964, pp. 369–370.
  • [7]VRHEL M.J., GERSHON R., IWAN L.S., Measurement and analysis of object reflectance spectra, Color Research and Application 19(1), 1994, pp. 4–9.
  • [8]GARCÍA-BELTRÁN A., NIEVES J.L., HERNÁNDEZ-ANDRÉS J., ROMERO J., Linear bases for spectral reflectance functions of acrylic paints, Color Research and Application 23(1), 1998, pp. 39–45.
  • [9]KOHONEN O., PARKKINEN J., JÄÄSKELÄINEN T., Databases for spectral color science, Color Research and Application 31(5), 2006, pp. 381–390.
  • [10]SHAMS-NATERI A., Wavelength intervals effect on reflectance spectra reconstruction, Optica Applicata 42(4), 2012, pp. 737–742.
  • [11]LAAMANEN H., JETSU T., JAASKELAINEN T., PARKKINEN J., Weighted compression of spectral color information, Journal of the Optical Society of America A 25(6), 2008, pp. 1383–1388.
  • [12]GUANGYUAN WU, ZHEN LIU, ENYIN FANG, HAIQI YU, Reconstruction of spectral color information using weighted principal component analysis, Optik – International Journal for Light and Electron Optics 126(11–12), 2015, pp. 1249–1253.
  • [13]AGAHIAN F., FUNT B., AMIRSHAHI S.H., Spectral compression: weighted principal component analysis versus weighted least squares, Proceedings of SPIE 9014, 2014, article 90140Z.
  • [14]JIANDONG TIAN, YANDONG TANG, Wavelength-sensitive-function controlled reflectance reconstruction, Optics Letters 38(15), 2013, pp. 2818–2820.
  • [15]FLINKMAN M., LAAMANEN H., TUOMELA J., VAHIMAA P., HAUTA-KASARI M., Eigenvectors of optimal color spectra, Journal of the Optical Society of America A 30(9), 2013, pp. 1806–1813.
  • [16]QIAN DU, WEI ZHU, HE YANG, FOWLER J.E., Segmented principal component analysis for parallel compression of hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters 6(4), 2009, pp. 713–717.
  • [17] Spectral Database, University of Eastern Finland, http://www2.uef.fi/fi/spectral/spectral-database
  • [18]AYALA F., ECHÁVARRI J.F., RENET P., NEGUERUELA A.I., Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors, Journal of the Optical Society of America A 23(8), 2006, pp. 2020–2026.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d599d6d-7780-4e7c-b531-b366677cff49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.