Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a graph of order n. The maximum and minimum degree of G are denoted by Δ and δ, respectively. The path partition number μ(G) of a graph G is the minimum number of paths needed to partition the vertices of G. Magnant, Wang and Yuan conjectured that [formula]. In this work, we give a positive answer to this conjecture, for Δ ≥ 2δ.
Czasopismo
Rocznik
Tom
Strony
829--839
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- University Paris Sud, France
autor
- University Yahia Fares of Medea, Department of Technology, Mathematics Laboratory and its Applications, Medea, Algeria
Bibliografia
- [1] M. Chen, J. Li, L. Wang, L. Zhang, On partitioning simple bipartite graphs in vertex-disjoint paths, Southeast Asian Bull. Math. 31 (2007), no. 2, 225–230.
- [2] H. Enomoto, K. Ota, Partitions of a graph into paths with prescribed endvertices and lengths, J. Graph Theory 34 (2000), no. 2, 163–169.
- [3] V. Gruslys, S. Letzter, Cycle partitions of regular graphs, arXiv:1808.00851.
- [4] J. Han, On vertex-disjoint paths in regular graphs, Electron. J. Combin. 25 (2018), no. 2, #P2.12.
- [5] M. Kouider, Neighborhood and covering vertices by cycles, Combinatorica 20 (2000), no. 2, 219–226.
- [6] M. Kouider, Covering vertices by cycles, J. Graph Theory 18 (1994), no. 8, 757–776.
- [7] M. Kouider, Z. Lonc, Covering cycles and k-term degree sums, Combinatorica 16 (1996), 407–412.
- [8] J. Li, G. Steiner, Partitioning a bipartite graph into vertex-disjoint paths, Ars Combin. 81 (2006), 161–173.
- [9] Ch. Lu, Q. Zhou, Path covering number and L(2, 1)-labeling number of graphs, Discrete Appl. Math. 161 (2013), 2062–2074.
- [10] C. Magnant, D.M. Martin, A note on the path cover number of regular graphs, Australas. J. Combin. 43 (2009), 211–217.
- [11] C. Magnant, H. Wang, Path partition of almost regular graphs, Australas. J. Combin. 64 (2016), 334–340.
- [12] P. Manuel, Revisiting path-type covering and partitioning problems, (2018), hal-01849313.
- [13] O. Ore, Arc coverings of graphs, Ann. Mat. Pura Appl. 55 (1961), no. 4, 315–321.
- [14] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996), no. 3, 277–295.
- [15] G. Yu, Covering 2-connected 3-regular graphs by disjoint paths, J. Graph Theory 18 (2018), no. 3, 385–401.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d559552-f687-4153-98d8-a4c81e516c3f