PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mixed convection heat transfer of a nanofluid in a square ventilated cavity separated horizontally by a porous layer and discrete heat source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laminar mixed convection heat transfer in a vented square cavity separated by a porous layer filled with different nanofluids (Fe3O4, Cu, Ag and Al2O3) has been investigated numerically. The governing equations of mixed convection flow for a Newtonian nanofluid are assumed to be two-dimensional, steady and laminar. These equations are solved numerically by using the finite volume technique. The effects of significant parameters such as the Reynolds number (10 ≤ Re ≤ 1000), Grashof number (103 ≤ Gr ≤ 106 ), nanoparticle volume fraction (0.1 ≤ φ ≤ 0.6), porous layer thickness (0 ≤ γ ≤ 1) and porous layer position (0.1 ≤ δ ≤ 0.9) are studied. Numerical simulation details are visualized in terms of streamline, isotherm contours, and average Nusselt number along the heated source. It has been shown that variations in Reynolds and Darcy numbers have an impact on the flow pattern and heat transfer within a cavity. For higher Reynolds (Re > 100), Grashof (Gr > 105 ) numbers and nanoparticles volume fractions the heat transfer rate is enhanced and it is optimal at lower values of Darcy number (Da = 10−5 ). In addition, it is noticed that the porous layer thickness and location have a significant effect on the control of the heat transfer rate inside the cavity. Furthermore, it is worth noticing that Ag nanoparticles presented the largest heated transfer rate compared to other nanoparticles.
Rocznik
Strony
87--114
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
  • Université de Bejaia, Laboratoire de Physique Théorique, Faculté de Technologie, Algeria
autor
  • Université de Bejaia, Laboratoire de Physique Théorique, Faculté de Technologie, Algeria
  • Université de Bejaia, Laboratoire de Physique Théorique, Faculté des Sciences Exactes, Algeria
Bibliografia
  • [1] Selvakumar R.D., Zhonglin D., Wu J.: Heat transfer intensification by EHD conduction pumping for electronic cooling applications. Int. J. Heat Fluid Flow 95(2022),108972.
  • [2] Ren F., Du J., Cai Y., Xu Z., Zhang D., Liu Y.: Numerical simulation study on thermal performance of sub-tropical double-layer energy storage floor combined with ceiling energy storage radiant air conditioning. Case Stud. Therm. Eng. 28(2021),101696.
  • [3] Niemann P., Schmitz G.: Air conditioning system with enthalpy recovery for space heating and air humidification: An experimental and numerical investigation. Energy213(2020), 118789.
  • [4] Dawar A., Wakif A., Thumma T., Shah N.A.: Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy. Int. Commun. Heat Mass Transf. 130(2022), 105800.
  • [5] Hongtao L., Zhang S., Ji Y., Sun M., Li X., Sheng Y.: The influence of catchment scale on comprehensive heat transfer performance about tube fin heat exchanger in numerical calculation. Energ. Rep. 8(2022), 147–155.
  • [6] Raja M.A.Z., Shoaib M., Zubair G., Khan M.I., Gowda R.J.P., Prasannakumara B.C., Guedri K.: Intelligent neuro-computing for entropy generated DarcyForchheimer mixed convective fluid flow. Math. Comput. Simul. 201(2022), 193–214.
  • [7] Awan A.U., Ahammad N.A., Ali B., Tag-ElDin E.M., Guedri K., Gamaoun F.: Significance of thermal phenomena and mechanisms of heat transfer through the dynamics of second-grade micropolar nanofluids. Sustainability 14(2022), 9361.
  • [8] Mehrizi A.A., Farhadi M., Hassanzade Afroozi H., Sedighi K., Darz A.A.R.: Mixed convection heat transfer in a ventilated cavity with hot obstacle: Effect of nanofluid and outlet port location. Int. Commun. Heat Mass Transf. 39(2012), 1000–1008.
  • [9] Ismael M.A., Jasim H.F.: Role of the fluid-structure interaction in mixed convectionin a vented cavity. Int. J. Mech. Sci. 135(2018), 190–202.
  • [10] Benzema M., Benkahla Y.Kh., Labsi N., Ouyahia S., El Ganaoui M.: Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag-MgO/water hybrid nanofluid. J. Therm. Anal. Calorim. 137(2019), 1113–1132.
  • [11] Selimefendigil F., Öztop H.F.: Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. Int. Commun. Heat Mass Transf. 113(2020), 104551.
  • [12] Ataei-Dadavi I., Chakkingal M., Kenjeres S., Kleijn C.R., Tummers M.J.: Experiments on mixed convection in a vented differentially side-heated cavity filled with a coarse porous medium. Int. J. Heat Mass Transf. 149(2020), 119238.
  • [13] Dhahad H.A., Al-Sumaily G.F., Alawee W.H., Thompson M.C.: Aiding and opposing re-circulating mixed convection flows in a square vented enclosure. Therm. Sci. Eng. Progress 19(2020), 100577.
  • [14] Moayedi H.: Investigation of heat transfer enhancement of Cu-water nanofluid by different configurations of double rotating cylinders in a vented cavity with different inlet and outlet ports. Int. Commun. Heat Mass Transf. 126(2021), 105432.
  • [15] Velkennedy R., Nisrin J.J., Kalidasan K., Rajeshkanna P.: Numerical investigation of convective heat transfer in a rectangular vented cavity with two outlets and cold partitions. Int. Commun. Heat Mass Transf. 129(2021), 105659.
  • [16] Jamshed W., Eid M.R., Hussain S.M., Abderrahmane A., Safdar R., Younis O., Pasha A.A.: Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder. Int. Commun. Heat Mass Transf. 134(2022), 106038.
  • [17] Benos L., Sarris I.E.: Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int. J. Heat Mass Transf. 130(2019), 862–873.
  • [18] Arani A.A.A., Mahmoodi M., Amini M.: Free convection in a nanofluid filled square cavity with a horizontal heated plate. Defect Diffus. Forum 312-315(2011), 433–438.
  • [19] Selimefendigil F., Öztop H.F.: Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders. Eng. Sci. Techn. Int. J. 18(2015), 439–451.
  • [20] Rabbi Kh.Md., Saha S., Mojumder S., Rahman M.M., Saidur R., Ibrahim T.A.: Numerical investigation of pure mixed convection in a ferrofluid-filled lid-driven cavity for different heater configuration. Alexandria Eng. J. 55(2016), 127–139.
  • [21] Elshehabey H.M., Raizah Z., Öztop H.F., Ahmed S.E.: MHD natural convective flow of Fe3O4-H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear Boussinesq approximation. Int. J. Mech. Sci. 170(2020),105352.
  • 22] Jakeer S., Reddy P.B.A., Rashad A.M., Nabwey H.A.: Impact of heated obstacle position on magneto-hybrid nanofluid flow in a lid-driven porous cavity with CattaneoChristov heat flux pattern. Alexandria Eng. J. 60(2021), 821–835.
  • [23] Wang A., Xu H.: Highly accurate wavelet-homotopy solutions for mixed convection hybrid nanofluid flow in an inclined square lid-driven cavity. Comput. Math. Appl. 108(2022), 88–108.
  • [24] Jayaprakash M.C., Alsulami M.D., Shanker B., Kuma R.S.V. Investigation of Arrhenius activation energy and convective heat transfer efficiency in radiative hybrid nanofluid flow. Waves Random Complex Media (2022), 1–13.
  • [25] Dutta S., Bhattacharyya S., Pop I.: Effect of hybrid nanoparticles on conjugate mixed convection of a viscoplastic fluid in a ventilated enclosure with wall mounted heated block. Alexandria Eng. J. 62(2023), 99–111.
  • [26] Neild D.A., Bejan A.: Convection in Porous Media. (3rd Edn.). Springer-Verlag,2006.
  • [27] Balla C. S., Kishan N., Gorla R.S.R, Gireesha B.J.: MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids. Ain Shams Eng. J. 8(2017), 237–254.
  • [28] Malik S., Nayak A.K.: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int. J. Heat Mass Transf. 111(2017),329–345.
  • [29] Sheremet M.A., Roşca N.C., Roşca A.V., Pop I.: Mixed convection heat transfer in a square porous cavity filled with a nanofluid with suction/injection effect. Comput. Math. Appl. 76(2018), 2665–2677.
  • [30] Abu-Hamdeh N.H., Öztop H.F., Alnefaie K.A.: A computational study on mixed convection in a porous media filled and partially heated lid-driven cavity with an open side. Alexandria Eng. J. 59(2020), 1735–1750.
  • [31] Mabood F., Yusuf T.A., Sarris I.E.: Entropy generation and irreversibility analysis on free convective unsteady MHD Casson fluid flow over a stretching sheet with Soret/Dufour in porous media. Spec. Top. Rev. Porous Media: Int. J. 11(2020), 6,595–611.
  • [32] Kumar R.N., Gowda R.J.P., Gireesha B.J., Prasannakumara B.C.: Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium. Eur. Phys. J. Spec. Top. 230(2021), 1227–1237.
  • [33] Kashyap D., Dass A.K.: Influence of cavity inclination on mixed convection in a double-sided lid-driven cavity with a centrally inserted hot porous block. Int. J. Therm. Sci. 181(2022), 107732.
  • [34] Alsedais N., Aly A.M., Mansour M.A.: Local thermal non-equilibrium condition on mixed convection of a nanofluid-filled undulating cavity containing obstacle and saturated by porous media. Ain Shams Eng. J. 13(2022), 101562.
  • [35] Choudhary P., Ray R.K.: MHD natural convective flow in a porous corrugated enclosure: Effects of different key parameters and discrete heat sources. Int. J. Therm. Sci. 181(2022), 107730.
  • [36] Nammi G., Deka D.K., Pati S., Baranyi L.: Natural convection heat transfer within a square porous enclosure with four heated cylinders. Case Stud. Therm. Eng.30(2022), 101733.
  • [37] Kumar V., Murthy S.V.S.S.N.V.G.K., Kumar B.V.R.: Multi-force effect on fluid flow, heat and mass transfer, and entropy generation in a stratified fluid-saturated porous enclosure. Math. Comput. Simul. 203(2023), 328–367.
  • [38] Mercier J-F., Weisman C., Firdaouss M., Le Quéré P.: Heat transfer associated to natural convection flow in a partly porous cavity. J. Heat Transf. 124(2002), 130–143.
  • [39] Chamkha A.J., Ismael M.A.: Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer. Heat Transf. A-Appl.65(2014), 1089–1113.
  • [40] Le Bars M., Worster M.G.: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550(2006), 149–173.
  • [41] Carcadea E., Varlam M., Ismail M., Ingham D.B., Marinoiu A., Raceanu M., Jianu C., Patularu L., Ion-Ebrasu D.: PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers. Int. J. Hydrogen Energ. 45(2020), 7968–7980.
  • [42] Aly A.M., Raizah Z.A.S., Ahmed S.E.: mixed convection in a cavity saturated with wavy layer porous medium: Entropy generation. J. Thermophys. Heat Transf. 32(2018), 3, 764–780.
  • [43] Astanina M.S., Sheremet M.A., Oztop H.F., Abu-Hamdeh N.: MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int. J. Mech. Sci. 136(2018), 493–502.
  • [44] Selimefendigil F., Öztop H.F.: Thermal management and modeling of forced convection and entropy generation in a vented cavity by simultaneous use of a curved porous layer and magnetic field. Entropy 23(2021), 152.
  • [45] Gibanov N.S., Sheremet M.A., Öztop H.F., Abu-Hamdeh N.: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int. J. Heat Mass Transf. 114(2017), 1086–1097.
  • [46] Al-Srayyih B.M., Gao S., Hussain S.H.: Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal nonequilibrium model. Phys. Fluids 31(2019), 043609.
  • [47] Al-Zamily A.M.J.: Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with a heat generation. Int. J. Heat Mass Transf. 106(2017), 1218–1231.
  • [48] Moria H.: Natural convection in an L-shape cavity equipped with heating blocks and porous layers. Int. Commun. Heat Mass Transf. 126(2021), 105375.
  • [49] Alsabery A.I., Hajjar A., Raizah Z.A.S., Ghalambaz M., Hashim I., Chamkha A.J.: Impact of finite wavy wall thickness on entropy generation and natural convection of nanofluid in cavity partially filled with non-Darcy porous layer. Neural Comput. Appl. 32(2020), 13679–13699.
  • [50] Chordiya J.S., Sharma R.V.: Numerical study on the effects of multiple internal diathermal obstructions on natural convection in a fluid-saturated porous enclosure. Arch. Mech. Eng. 65(2018), 4, 553–578.
  • [51] Rana G.C.: The onset of thermal convection in couple-stress fluid in hydromagnetics saturating a porous medium. Bull. Pol. Acad. Sci. Tech. Sci. 62(2014), 2, 357–362.
  • [52] Saeed F., R., Al-Dulaimi M.A.: Numerical investigation for convective heat transfer of nanofluid laminar flow inside a circular pipe by applying various models. Arch. Thermodyn. 42(2021), 1, 71–95.
  • [53] Korib K., Ihaddadene N., Bouakkaz R., Khelili Y.: Numerical simulation of forced convection of nanofluid around a circular cylinder. Arch. Thermdyn. 40(2019), 2,3–16
  • [54] Brinkman H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(1952), 571–581.
  • [55] Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, McGraw-Hill, Washington DC 1980.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d52cbc7-0e9f-4ad7-b6be-da4a7a540828
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.