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Static Large Games with Finitely Many Types of Players and Strategies

Abstract. The paper briefly presents a theory of games with finitely many infinite 
populations (types) each of whom has finitely many available strategies; the payoff 
of an individual player depends on the distribution of choices of strategies in all 
populations and his own particular choice. We give specific examples of 
applications of the theory in several areas: spatial allocation (of species), economic 
models – household economy and transportation networks. We also briefly 
discuss questions of computation of equilibria and relations of large games, as 
understood in the present paper, to ordinary matrix games, games with 
continuum of players and evolutionary game theory.

Keywords and phrases: large game, equilibrium, strategy, type of player, spatial 
allocation, household economy, road traffic model, directed graph, Fibonacci 
numbers

Statyczne duże gry ze skończoną liczbą typów graczy i strategii

Streszczenie. Praca zawiera skrótowy opis gier ze skończoną liczbą 
nieskończonych populacji (typów), z których każda dysponuje skończoną liczbą 
strategii; wypłata pojedynczego gracza zależy od rozkładu wyborów
strategii wszystkich populacji i jego własnego wyboru strategii. Podajemy 
konkretne przykłady zastosowań w kilku dziedzinach: alokacja przestrzenna 
(gatunków), modele ekonomiczne – model gospodarki drobnotowarowej i model 
ruchu drogowego. Dyskutujemy też krótko zagadnienia obliczeniowe i związki
dużych gier, jak przedstawiono je w tym artykule, ze zwykłymi grami 
macierzowymi, grami z continuum graczy i z ewolucyjną teorią gier.

Słowa i frazy kluczowe: duża gra, równowaga, strategia, typ gracza, alokacja 
przestrzenna, gospodarka drobnotowarowa, model ruchu drogowego, graf 
skierowany, liczby Fibonacciego 

2



 
 
 
 
1. Introduction 
 
„Large games” is a concept intended to formalize and create precise mathematical background to 
study situations involving a large number of participants undertaking decisions of importance for 
them. Obviously, we are often faced with such situations in scientific research and usually in cases 
where some data is presented in an aggregate way; for instance, if we describe an economy involving 
millions of households then we do not give a complete  description of those households but we use a 
sort of aggregation. We rather classify the considered households into types, for instance according to 
their size, location etc. We then assume that the so classified objects (households) have some 
common features and they usually may undertake similar actions resulting in similar outcomes. This 
is to be understood as a large game: a finite number of infinite uniform populations; the payoff of an 
individual player depends on his own decision and the distributions of the decisions chosen by all 
populations. Allowing the populations to be infinite also gives a chance to use a broader arsenal of 
mathematical tools.  
More formally:  
in an ordinary noncooperative game, the players′ payoffs are defined for sequences of pure 
strategies and have the form: Fi: S1×···×Sn → ℝ;  
in the mixed extension, the players′ payoffs are defined for sequences of mixed strategies and have 

the form: Fi: ∆
1k ×···×∆

nk → ℝ; (the ∆s to be defined soon); 

in a large game, the players′ payoffs are defined for individual decisions and sequences of the types′ 
strategy distributions (which are identical with mixed strategies, but interpreted differently) and have 

the form: Fi: Si×∆
1k ×···×∆

nk →ℝ.  

 
In this paper we briefly present a theory of large games with finitely many (usually pairwise 
differing) infinite populations and applications of this theory in the areas of biology (spatial allocation 
of species), economics (household economy) and engineering and computer science (flows in 
networks). Partly it is a survey of previously published results which are however rearranged and 
presented in a unified manner. The paper also presents new results, especially in parts concerning 
transportation networks (Section 6).  
We also briefly discuss questions of computation of equilibria and relations of large games, as 
understood in the present paper, to ordinary matrix games, games with continuum of players and 
evolutionary game theory. 
 
Actually, the paper describes a procedure which can be generally applied to prove the existence of 
equilibria in models arising in various disciplines of science. This procedure formally describes 
what is actually often done in practice: aggregation and processing of the data. The procedure is  
mainly applicable in situations where the number of decision subjects is very large and: (1) they 
can only influence their own payoff but not the payoffs of the others; (2) a precise description of 
characteristics of all individuals is impossible or simply senseless.  
 

1



2. Notation and basic definitions  
 
|V| – the number of elements of a finite set V;  
χ – the characteristic function, i. e. χ(A) = 1 if A is true and otherwise χ(A) = 0;   
for any ordered pair e = (v,w) we denote ẽ = (w,v);  
(At|t∈T)) – a family indexed by elements of the set T;  
∆n – the (n–1)-dimensional standard simplex, i. e. ∆n = {x∈ℝn

+|∑ ix i = 1};  
<x; y> – the inner product of x and y;  
supp p – the support of p, i. e. the set of indices i for which pi is different from 0; 
x ≤ y, applied to vectors x, y, means xi . yi for all i;  
xT denotes the transposition of the vector x.  
Generally, upper indices are used to numerate players, lower indices – to numerate strategies.  
 
A directed graph is a pair G = (V, E) such that V is a finite set (of objects called vertices) while E is 
a set of ordered pairs of distinct elements of V (the elements of E are called edges).  
A undirected graph is a directed graph in which for all (v,w)∈V2, (v,w)∈V implies (w,v)∈V.    
We assume in this paper that graphs have no loops (edges of the form (v, v)). A path in a graph G is 
a sequence of vertices (v0, v1, …, vn) such that (vi–1, vi)∈E for i = 1, …, n; v0 is a beginning while 
vn is an end of the path. We say that a graph is connected if for every distinct vertices v and w there 
exists a path beginning at v and ending at w. A path is straight if all vi, i = 0, …, n, are different; its 
length is n. A path is a cycle if all vi, i = 1, …, n, are different and v0 = vn. We denote by P(v,w) the 
set of all straight paths beginning at v and ending at w; this set is obviously finite.  
The graph which can be arranged into a path in which there are no other edges is a chain.  
If (v,w) belongs to E then w is a neighbor of v; the set of all neighbors of v is denoted by Nb(v).  
 
3. Large games (with finitely many types of players and strategies)  
 
A large game is a system Γ = (G, (Sg|g∈G), (Fg|g∈G)), where G is a finite set of the types of 
players, for g∈G, Sg is an at least two-element finite set of strategies available for players of type g, 
Fg: Sg×S → ℝ are payoff functions of players of type g, for g∈G; in this case S denotes the product 

Πg∈G .gS
∆   

A profile in a large game Γ is an element of S = Πg∈G gS
∆ . An equilibrium in a large game Γ is a 

profile p = (pg|g∈G) such that for every g∈G, for all s∈supp pg and all s′ ∈Sg, there is  
Fg(s′; p) . Fg(s; p).  
 
Remark. A profile p = (pg|g∈G) is an equilibrium if and only if there exist numbers (Cg|g∈G) such 
that for all g and i belonging to the support of pg, Fg(i;p) = Cg and for the remaining i, Fg(i;p) . Cg. � 
 
THEOREM 1. Let a game Γ = (G, (Sg|g∈G), (Fg|g∈G)) be given. If for all types g and all strategies 
s∈Sg, the functions Fg(s; ·) are continuous then the game has an equilibrium.  
 
The proof of this theorem relies on a direct application of the Kakutani Theorem. The details can be 
found in Wieczorek [2004]. � 
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4. Application: spatial allocation  
 
Here we are interested in problems in which members of several populations (species) have to select 
a habitat from a set of possible locations. So, jointly each population generates a frequency 
distribution on the set of all available locations formally, it is a vector p having |V| nonnegative 
coordinates which sum up to 1. The payoff of each individual depends on his own decision and 
distributions of the choice of all populations.  
 
Neighborhood games  
In the neighborhood games the payoffs only depend on the location of the given individual and the 
volumes of settlements of all populations in this and in the neighboring (second-order neighboring 
etc.) locations.  
Formally, in this paper we understand a single-population neighborhood game as follows:  
There is given an undirected connected graph G = (V, E) and a real number α.  
The payoff of a player who chose a vertex v while a generated distribution was p, is equal to  
 

F(v;p) = pv + α·Σw∈Nb(v) pw.  
 

Such a game will be denoted by [G, α].  
 
Examples of equilibria in single-population neighborhood games  
 

Example 1. (Equilibria in [In,
3
1 ].) Game of single-population with underlying graph being a chain In 

(with n vertices v1, v2, …, vn), α = 
3
1 , so we have the game [In,

3
1 ].   

So the payoff of individuals who chose v1 is equal to p1 +
3
1 · p2; the payoff of those who chose vn is 

equal to pn +
3
1 · pn–1; those who chose one of the remaining vi will receive pi +

3
1 · (pi–1+ pi+1) .  

Finding a full support equilibrium in [In,
3
1 ] 

We present a method to construct an equilibrium whose support are all vertices. (There is  
exactly one such equilibrium.) The illustration is given for the case of n = 7; for the other n’s 
the construction is analogous. 
 

v1           v2            v3            v4           v5            v6           v7 
∘−−−−∘−−−−∘−−−−∘−−−−∘−−−−∘−−−−∘  

 

Step 1.                         1            1             2             3            5             8            13  
Step 2.                       13           8             5             3            2             1             1 
Step 3.                        13            8           10             9           10            8            13 
Step 4.                       

71
13

71
8

71
10

71
9

71
10

71
8

71
13  
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In step 1 we assign consecutive Fibonacci numbers to consecutive vertices.  
In step 2 the same numbers are written in the reversed order below.  
In step 3 the two numbers above are multiplied.  
In step 4 we simply normalize the sequence in the previous row, multiplying the numbers by the 
inverse of their sum.  

So we found a distribution 







71
13,

71
8,

71
10,

71
9,

71
10,

71
8,

71
13  which occurs to be an equilibrium 

in the game [I7,
3
1 ]. To prove it, we check that the payoff, at the choice of any vi, i = 1, …, 7, is the 

same and it is equal to 
213
47 .  

The last step 4 can be skipped if we intend to execute the procedure in the next paragraph.  
 

Finding all equilibria in [In,
3
1 ] 

We first note that for every nonempty subset S of the set of all vertices there is exactly one 
equilibrium with support equal to S.  

Step 1. We find equilibria of the games [I i,
3
1 ], i = 1, 2, …, n, with full supports, in the analogous 

manner as it was done in the previous section.  
Step 2. We identify all maximal connected subsets of S, we call them blocks.  
Step 3. We select a support and find the blocks which constitute it. We assign consecutive numbers 
of respective equilibria to consecutive elements of the blocks. (This step must be repeated for each 
potential support; their number is obviously 2n–1.) 
Step 4. We then normalize the numbers assigned to the blocks so as to make the payoffs 
corresponding to all blocks equal.  
Step 5. Finally, we normalize again so as to get the sum of all numbers equal 1.  
 

To illustrate this procedure, we get back to the example of [I7,
3
1 ]; we find  

the equilibrium 







38
8,

38
5,

38
6,

38
6,

38
5,

38
8  for [I6,

3
1 ] with the payoff 

114
29 ; 

the equilibrium 







20
5,

20
3,

20
4,

20
3,

20
5  for [I5,

3
1 ] with the payoff 

10
3 ;  

the equilibrium 







10
3,

10
2,

10
2,

10
3  for [I4,

3
1 ] with the payoff 

30
11 ;  

the equilibrium 







5
2,

5
1,

5
2  for [I3,

3
1 ] with the payoff 

15
7 ;  

the equilibrium 








2
1,

2
1  for [I2,

3
1 ] with the payoff 

3
2 ;  
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the equilibrium (1) for [I1,
3
1 ] with the payoff 1.  

We select a subset of the set of all vertices and identify the blocks which constitute it. For example, 
we take into account the set of vertices W = {v1, v3, v4, v5, v6}. So we have  
 

v1           v2            v3           v4            v5            v6           v7 
•−−−−∘−−−−•−−−−•−−−−•−−−−•−−−−∘ 

         
   

blockndblockst 21

 

 
and we identify the blocks: {v1} and {v3,v4,v5,v6}. We then assign the coefficients associated with 
respective equilibria to consecutive blocks:  
 

v1           v2            v3            v4           v5            v6            v7 
•−−−−∘−−−−•−−−−•−−−−•−−−−•−−−−∘ 

                                1                  
10
3

10
2

10
2

10
3  

 
We then normalize the terms assigned to respective blocks so as to get equal payoffs in consecutive 
blocks:    

                               
10
3

10
2

10
2

10
3

30
11  

 
and finally we normalize once again to obtain a probability distribution:  
 

                               
41
9

41
6

41
6

41
9

41
11 .  

 
So the constructed (unique) equilibrium  with the support {v1, v3, v4, v5, v6} is  

.0,
41
9,

41
6,

41
6,

41
9,0,

41
11







   

 

Example 2. (Equilibria in [On,
3
1 ].) The situation is similar in the case of neighborhood games on 

graphs being cycles; the difference is only in the case where the support of an equilibrium is to be the 
set of all vertices; in this case the equilibrium is the distribution whose all terms are equal to |V|–1. The 
symbol On denotes the n-element cycle.  

In the case of the game [O7,
3
1 ] (the graph is drawn below) 
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        v1           v2           v3            v4 
 •−−−−•−−−−•−−−−•  

                                                                                
                                                 •−−−−−−•−−−−−−•  

        v7                    v6                    v5 
this equilibrium is equal to .

7
1,

7
1,

7
1,

7
1,

7
1,

7
1,

7
1







   

Finding all equilibria in games [In, α] and [On, α] for α∈[0,
2
1 )  

Finding all full support equilibria in [Ln, α] can be proceeded as follows:  
For any real number A we first define an infinite sequence, to be called generalized Fibonacci 
sequence with parameter A = 2.   
The sequence (FA

1, FA
2, FA

3, …) is defined as follows: FA
1 = FA

2 = 1; then, having already defined 
FA

1, FA
2, …, FA

k–1, we define FA
k = A⋅FA

k–1 + FA
k–2 for odd k and FA

k = FA
k–1 + FA

k–2 for even k.   
In the next step we define, for natural positive k sequences (fAk

1, …, fAk
k) as follows:  

if k is even then, for i = 1, …, k, fAk
i = FA

i ⋅FA
k+1–i;  

if k is odd then, for odd i = 1, 3, 5, …, k, fAk
i = FA

i ⋅FA
k+1–i;  

if k is odd then, for even i = 2, 4, 6, …, k–1, fAk
i = A⋅FA

i ⋅FA
k+1–i.  

The so defined sequence (fAk
1, …, fAk

k) is called a standard A-sequence of length k. 
The normalized standard A-sequence of length k is the sequence  

 

N(fAk
1, fAk

2, …, fAk
k) = (B⋅fAk

1, B⋅fAk
2, …, B⋅fAk

k), where B = fAk
1 + fAk

2 + ∙∙∙ + fAk
k. 

 

THEOREM 2. We are given a game [In, α] with α∈(0,
2
1 ). The unique equilibrium with full support 

is the normalized standard A-sequence of length n, where A =1/α  – 2.  
 
Details of the proof can be found in Wieczorek [2009].� 
 
To find all equilibria in [In,α] and [On,α] we must mimic the procedure previously performed to find 

all equilibria in [In,
3
1 ] and [On,

3
1 ]: we choose we first identify all blocks, then we assign the 

already found equilibrium for the respective blocks, then we proportionally adopt the payoffs in all 
blocks and finally we normalize the obtained sequence to have the sum of its all elements equal to 1.   
 
Example 3. The generalized Fibonacci sequence with parameter A = 2 is  
(1, 1, 3, 4, 11, 15, 41, 56, 153, 209, …). The sum of the first 6 elements of this sequence is 76; the 
sum of the first 7 elements is 240.  
For A = 1 we get the ordinary Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, …).  
 

Example 4. Equilibria in [I6,
4
1 ]. The standard A-sequence of length 6,  

 

(fA,6
1, fA,6

2, fA,6
3, fA,6

4, fA,6
5, fA,6

6),  
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is equal to  
 

(FA
1 ⋅FA

6, FA
2 ⋅FA

5, FA
3 ⋅FA

4, FA
4 ⋅FA

3, FA
5 ⋅FA

1, FA
6 ⋅FA

1);  
 

for A = 2 this sequence becomes (15, 11, 12, 12, 11, 15) and after normalization 







 ,

76
15,

76
11,

76
12,

76
12,

76
11,

76
15 . By Theorem 2 this is the unique equilibrium with full support in 

[I6,
4
1 ].  

 

Example 5. Equlibria in [I7,
4
1 ]. The standard A-sequence of length 7,  

 

(fA,7
1, fA,7

2, fA,7
3, fA,7

4, fA,7
5, fA,7

6, fA,7
7), 

is equal to  
 

        (FA
1 ⋅FA

7,  A⋅FA
2 ⋅FA

6,  FA
3 ⋅FA

5,  A⋅FA
4 ⋅FA

4,  FA
5 ⋅FA

3,  A⋅FA
6 ⋅FA

2,  FA
7 ⋅FA

1);  
  
for A = 2 this sequence becomes (41, 30, 33, 32, 33, 30, 41) and after normalization 









240
41,

240
30,

240
33,

240
32,

240
33,

240
30,

240
41 . By Theorem 2 this is the unique equilibrium with full 

support in the game [I7,
4
1

].  

Example 5. For any connected graph G and any nonempty set of its vertices W with k elements the 
unique equilibrium in the game [G,0] whose support is W is a profile assigning the number k–1 to 
elements of W and 0 to the remaining vertices. This game has exactly 2n–1 equilibria.  
 
5. Application: economic models  
 
Household economies 
The model of a household economy consists of the following elements: 

• a positive integer n which is the number of types of households; 
• a positive integer k which is the number of different activities (equal to the number of 

goods at the market); 
• a vector q = (q1, q2, …, qn)∈ℝn describing the structure of the population of respective 

types, for convenience it may be assumed that q∈∆n ; 
• a matrix R = (ri

j) (i = 1, …, n, j = 1, …, k), with nonnegative entries (matrix of coefficients 
of efficiency); it is understood that the household of type i undertaking the j-th activity 
produces ri

j units of the good number j, for i = 1, …, n,  j = 1, …, k;  
• (demand) functions di: ℝ+×∆k →ℝk

+ of respective types of households; the actual 
demand of a household depends on its income I = ri

j  ·πj, where π j is the unit price of the j-
th good and we assume that at the prevailing price system π = (π1, …, πk) the equation 
<di(I, π); π> = I is satisfied for all arguments involved, i.e. the value of individual demand 
at given income at prevailing prices is equal to the actual income. (We assume that all 
prices are nonnegative, for convenience we also assume that prices are normalized,  
i. e. π = (π1, …, πk)∈∆k.) 
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The so described economy will be shortly denoted by E = (n, k, q, R, (di|i=1, …, n)).  
A distribution of actions of the households of a fixed type, determined by a vector  
pi = (pi

1, …, pi
k)∈∆k, describes a situation where the fraction pi

j (for instance understood as 25% if  
pi

j = 0.25) of all households of type i decided to undertake the j-th activity,  
for j = 1, …, k and i = 1, …, n. The sequence of vectors (p1, …, pn), describing activity of households 
of all types will be shortly denoted by p.  
Given a distribution of activities p = (p1, …, pn) and a price system p = (p1, …, pk), the aggregated 
demand (for all goods) is the vector 

D(p,p) = ( ) i
j

k

j
j

i
ji

n

i

i prdq ⋅⋅⋅∑∑
== 11

,pp

while the aggregated supply (of all goods, hence it is a k-vector) is defined by 

S(p) = 







⋅⋅⋅⋅ ∑∑

==

i
k

n

i

i
k

ii
n

i

ii prqprq
1

1
1

1 ,,

(note that the latest term does not depend on p).  
A state of the economy E is formally defined as a pair (p,p): a vector of distributions of activities of 
the households of all types p = (p1, …, pn) and a price vector p. A competitive equilibrium is a state of 
the economy (p,p) such that  

D(p,p) ≤ S(p) 

and for all i = 1,…, n and all j∈supp pi there is 
ri

j ·pj = max l=1,…,k ri
l ·pl 

(we do not require that at equilibrium the demand must be equal to supply but this will be the case if 
the prices are positive, see Theorem 3 below). So a competitive equilibrium is a state of the economy, 
such that there is no good the demand for which is larger than its supply and such that (almost) all 
households are choosing activities giving them the maximal possible income, the same for all 
households of their type. We allow for an excess supply but this may only happen if the price of such 
a good is zero; this situation cannot happen at equilibrium if the demand functions (for each fixed 
good) are strictly decreasing in price of this good.  

Auxiliary large game 

One way to prove the existence of a competitive equilibrium for a household economy has been 
proposed by Wieczorek in [1996]; it is based on a construction of an auxiliary large game  

ΓE = (G, (Sg|g∈G), (Fg|g∈G)) 

with n + 1 types of small players, each of whom has k available actions with appropriately defined 
payoff functions; players of the auxiliary (n + 1)-st type are responsible for clearing the market (this 
is a novelty, usually in general equilibrium literature there is just one player responsible for clearing 
the market). Formally:  
the set of types G is equal to {1, …, n, n+1};  
all strategy sets Sg are equal to {1, …, k};  
for g = 1, …, n and j = 1, …, k, Fg(j; p,p) = rg

j·pj;  
for j = 1, …, k, Fn+1(j; p,p) = Dj(p,p) – Sj(p).  
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The following theorem was formulated by Wieczorek in [1996], the idea going back to the seminal 
paper by Arrow and Debreu [1950]: 
 
THEOREM 3. Let E = (n, k, q, R, (di|i=1, …, n)) be a household economy.  
(i) Equilibria of the auxiliary game ΓE are the same as competitive equilibria of E. 
(ii) If all demand functions di are continuous then the auxiliary game has an equilibrium; hence there 
exists a competitive equilibrium of E. 
(iii) (Walras Law) If all demand functions di are continuous and satisfy the condition 
 

 <di(I,π);π> = I for all i and π  in the domain of di                        (#) 
 

then, at any competitive equilibrium (p*,π*), for all j = 1, …, k,  
 

Dj(p*,π*) < Sj(p*) implies π*
j = 0.  

 
(iv) If all demand functions di are continuous and satisfy the condition (#) while all coefficients of 
efficiency are positive then, at any competitive equilibrium (p*,π*),  
there is D(p*,π*) < S(p*). � 
 
6. Road traffic model  
 
Let G = (V, E) be a directed graph without loops. Because of the intended interpretation, we shall 
rather call vertices towns, edges – roads and paths – routes. The graph itself is then called a traffic 
net. Another possible interpretation would be in terms of information theory: the routes are 
communication channels in which data is remitted in measurable units.  
For a path t = (v0, v1, …, vn), we denote by Parts(t) the set of all roads of the form (vi–1, vi),  
for some i = 1, …, n.  
A type (of travelers) is any nonempty subset T of some P(v,w).  
A simple traffic problem over G is a system  
 

Γ = (T, (rT|T∈T), (fe |e∈E)), 
 
such that T is a nonempty collection of types, the numbers rT are positive (we denote R = ∑T∈T rT)  
and, for e∈E, fe: [0,R]×[0,R] → ℝ+. Those functions are called partial cost functions while rT are 
the types′ volumes.  
A strategy profile of population of type T is a probability distribution on the set of elements of T,  
so it can be identified with an element of ∆ |T|. A global strategy profile is an s = (sT|T∈T), where sT  
is a strategy profile of population T; it can be regarded as an element of ΠT∈T ∆ |T|.  
Intensity of traffic along edge e, subject to a global strategy profile s, is the number  

 
O(e,s) =  ∑T∈T  rT ⋅∑ t∈T sT

t ⋅ χ(e∈Parts(t)). 
 

If needed, we take O(e,s) =  0 for e not belonging to E.  
Finally, we define, for a global strategy profile s and a traveler of type T who chose a strategy t, his 
total cost to be equal to  

∑e∈Parts(t) fe(O(e,s),O(ẽ,s)).  
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Example of a road traffic net:  
 

       v1          v2            v3            v4 
 ∘−−−−∘−−−−∘−−−−∘  

                                                │        │        │         │ 
                                                 ∘−−−−∘−−−−∘−−−−∘  

        v8            v7           v6           v5 
 
Remark. The model is possibly simple, it can be arbitrarily extended, if necessary. A natural and 
rather simple generalization is by taking into account the case where the cost of the choice of a route 
also depends on the cost of passing through a town (vertex); also the entrance to the destination and 
exit from the departure place may cost; those situations can be modeled analogously, as in the 
previous construction.  
 
THEOREM 4. If all functions fv(·, ·) are continuous then there is an equilibrium in the model.  
 
To prove this theorem just note that Γ is already a large game, one only has to verify the assumptions. � 
 
7. Remarks on computation methods  
 
In this section we only list the computation methods that may been used to compute equilibria in 
large games and related models. Their detailed description extends the scope of the present paper and 
it rather deserves a presentation in a separate paper.  
Finding all equilibria in a game Γ = (G, (Sg|g∈G), (Fg|g∈G)) is equivalent to finding all solutions s 
of the system of equations  
 

Θg(s) = max gSj∈  Fg(j,s) – Σ gSj∈
(sg

j·Fg(j,s)) = 0, for g∈G. 

 
Since all Θg(s) are nonnegative, the above problem is equivalent to the following:  
 

Find s such that Σg∈GΘg(s) = 0. 
 
Because of the max operator appearing above, the optimization problem is usually nonsmooth which 
complicates the application of standard search methods.  
Nevertheless, the following methods of finding equilibria often prove successful:  

• (quasi-)analytic;  
• (modified) iterative; 
• „intuitive” – guess and verify; 
• finite element; 
• artificial intelligence. 

 
For references concerning computation of equilibria see Maćkiewicz and Wieczorek [2002],  
Doup and Talman [1985, 1987], Zaifu Yang [1999], Scarf and Hansen [1973] and Van der Laan and 
Talman [1982].  
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Appendix 1. Relations to ordinary games 
 
To allow for immediate comparison, we recall some definitions concerning classic noncooperative  
games.  
A finite k-person game (k>2) is a system Γ = (G, (Sg|g∈G), (Fg|g∈G)), where G is a  k-element set 
of players, all strategy sets Sg of respective players have at least two but finitely many elements while 
Fg: Πg∈GSg → ℝ are called payoff functions of respective players.    
In the case of k = 2 the payoffs are usually presented by a pair of matrices:  
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A profile in a k-person game Γ is a system of strategies s = (sg|g∈G), sg∈Sg (one for each player). 
Equilibrium in a k-person game Γ is a profile s = (sg|g∈G), sg∈Sg, such that for every player g and 
every profile s′ differing from s only so that in s the strategy of the player g is replaced by another 
strategy s′ from the set Sg, there is Fg(s′) . Fg(s), i. e. no player can increase his payoff unilaterally 
changing his strategy.  
 
A mixed strategy of player i is a probability distribution on the set of his strategies Si = {1, 2, …, ki}, 

so it is an element of the ( )1−ikS -dimensional standard simplex ikS
∆ .  If each player i 

chooses his mixed strategy pi, then the players jointly generate the profile p = (p1, …, pn).  
 
An equilibrium in a game Γ is a profile p* = (p*1, …, p*n) composed of mixed strategies such that for 
every player i and all his mixed strategies pi there is  
 

Fi(p*1, …, p*i-1, pi, p*i+1, …, p*n) . Fi(p*);  
 

in other words, no player can increase his payoff by a unilateral change of his strategy.  
 
THEOREM 5 (Nash [1950]). Every finite game has an equilibrium in mixed strategies. � 
 
For references to this section see Aumann [1964, 1966], Balder [1995], Flåm and Wieczorek [2006], 
Rath [1994] and Vind [1964].  
 
Appendix 2. Relations to games with continuum of players  
 
A game with a continuum of players or, more properly, a game with a measure space of players, is 
given by a specification of the players, usually identified with elements of a normed measure space 
(T,T, μ), the players´ nonempty strategy sets St, t∈ T, assumed to be all included in some set S 
(usually for technical reasons equipped with a σ-field Σ) and the playersʹ payoff functions. To define 
the latter, we need the notion of a strategy profile: 
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it is a measurable function s: T → S such that s(t)∈ St for all t∈ T. The payoff function of player t, 
ut(σt,s), depends on the player′s own choice of strategy σt∈ St and the strategy profile s. We assume 
that ut(σt,s) = ut(σt,s′) whenever the profiles s and s′ are measure equivalent. Hence, a game with a 
measure space of players is identified with a system  

Γ = ((T,T, μ), (St|t∈ T), (S,Σ), (ut|t∈ T)). 

Measurable sets of players of measure zero are referred to as negligible. 
A strategy profile s is said to form a Cournot-Nash equilibrium if the set of players t who can find a 
strategy σt∈ St such that ut(σt,s) > ut(s(t), s) is negligible. We say that players are of the same type 
whenever they have the same strategy sets and payoff functions.  

THEOREM 6 (equal treatment). At a Cournot-Nash equilibrium the 
payoff of almost all players of the same type is equal (even though they may 
use different strategies). � 

Suppose now that in a game Γ there are, possibly except for a negligible set of players, only finitely 
many types of players endowed with finite strategy sets. 
We now define a game γ, called a game corresponding to Γ. For the initial game Γ, we label the types 
of players by 1, ..., n and denote by Ti the set of all players of type i (we assume that these sets are 
measurable and μ(Ti) > 0). Let 1, …, ki label elements in the strategy set Si of players of type i. 
Neglecting the players in a negligible set we may then assume that S is finite (with Σ being the field 
of all subsets). For any strategy profile s any type i and any j∈ Si, we denote by 

κs(i, j) = μ({t∈ Ti|s(t) = j})/μ(Ti) 

the frequency of players of type i who use strategy j at profile s. The function κs will also be referred 
to as the distribution of s. We also set  
 

Ks(i) := (κs(i,1), …, κs(i,ki)). 

We shall say that a game with a measure space of players is of finite type whenever there are finitely 
many types of players, endowed with finite strategy sets and, for every player t of type i, his payoff 
function has the form  
 

ut(σt,s) := Fi(σt;Ks(1), ..., Ks(n)), 

i.e. every player′s payoff only depends on his own choice of action and the distribution of the other 
players′ actions. 
In that case we define a large game γ corresponding to Γ as  

γ := (n; k1, ..., kn; F1, ..., Fn), 

where all numbers and functions above are those already considered for Γ. 

THEOREM 7. Let a large game γ correspond to a game Γ with a measure space of players, of finite 
type, and let s be any strategy profile for Γ. Then s is a Cournot-Nash equilibrium for Γ if and only if 
Ks := (Ks(1), ..., Ks(n)) is an equilibrium for γ. �  

Games with a continuum of players were introduced by Schmeidler [1973] and then studied by many 
authors, among them Mas-Colell [1984]. The model of Schmeidler is intuitive and mathematically 
elegant but it hardly fits practical (computational) problems because of its high complexity.   

12



Appendix 3. Relations to evolutionary game theory 
 
Large games perfectly fit the framework of ”evolutionary games” which often deal with single 
populations, but the authors are forced to use two-person games to model. Large games allow to 
avoid this disadvantage.  
For instance, an equilibrium p = (p1, …,  pn) for a large game Γ = (G, (Sg|g∈G), (Fg|g∈G)) is called 
evolutionary stable whenever, for every distribution q = (q1, …, qn) different from p and such that 
supp qi⊆ supp pi for i = 1, …, n, there is <qi; Fi(q)> < <pi; Fi(q)> for some i.  
(Note that <qi; Fi(q)> = Σ j=1,…,k qi

j ·Fi(j; q) and <pi;Fi(q)> = Σ j=1,…,k pi
j ·Fi(j; q).) 

 
For references to this section see Cressman [1995], Maynard Smith [1982], Ritzberger and Weibull 
[1995], Taylor [1979] and Weibull [1995].  
 
Acknowledgement. I wish to thank the participants of the seminar on game and decision theory held 
at the Institute of Computer Science for their remarks and suggestions; I am also grateful to my 
students with whom we experienced computing equilibria in various large games and models.  
 
 
Selected literature:  
 
Kenneth J. Arrow and Gerard Debreu, Existence of an equilibrium for a competitive economy, 
Econometrica 22(3), 1954, 265-290  
 
Robert J. Aumann, Markets with a continuum of traders, Econometrica 22, 1964, 165–290  
 
Robert J. Aumann, Existence of equilibria in markets with a continuum of traders, Econometrica 34, 
1966, 165–290  
 
Eric Balder, A unifying approach to existence of Nash equilibria, International Journal of Game 
Theory 24, 1995, 79–94 
 
R. Cressman, Evolutionary game theory with two groups of individuals, Games and Economic 
Behavior 11, 1995, 237–253  
 
T. M. Doup and Adrian J. Talman, A continuous deformation algorithm on the product space of unit 
simplices, Mathematics of Operations Research 12, 1983, 485–521  
 
T. M. Doup and Adrian J. J. Talman, A new simplicial variable dimension algorithm to find equilibria 
on the product space of unit simplices, Mathematical Programming 37, 1987, 319–355  
 
Maria Ekes, General Elections Modeled with Infinitely Many Voters, Control and Cybernetics 32, 
2003, 163-173  
 
Maria Ekes, Equilibria in Labor Markets with Infinitely Many Employees, Przegląd Statystyczny 
50(1) 2003, 45-58 
 
Maria Ekes, Core and Equilibria in Models of Large Household Economy, Applicationes 
Mathematicae 30(4), 2003, 431-440 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13



Sjur D. Flåm and Andrzej Wieczorek, Core solutions and Nash equilibria in non-cooperative games 
with a measure space of players, in: Game Theory and Mathematical Economics, Banach Center 
Publications 71, A. Wieczorek, M. Malawski and A. Wiszniewska-Matyszkiel (eds.), 2006, 115-123  
 
Andrzej Maćkiewicz and Andrzej Wieczorek, Computing Equilibria in Economic Models with 
Infinitely Many Agents, Information Technology for Economics and Management Management 1, 
2002, www.item.woiz.polsl.katowice.pl/ [also appeared as a report Praca Instytutu Podstaw 
Informatyki PAN 903, 2000, Warszawa]  
 
Andrzej Maćkiewicz and Andrzej Wieczorek, Computing Equilibria in Models of Spatial Allocation 
of Infinite Populations, Information Technology for Economics and Management 1, 2002, 
www.item.woiz.polsl.katowice.pl/ [also appeared as a report Praca Instytutu Podstaw Informatyki 
PAN 902, 2000, Warszawa] 
 
Andreu Mas-Colell, On a theorem of Schmeidler, Journal of Mathematical Economics 13, 1984, 201-
206  
 
John Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982  
 
John F. Nash Jr., Equilibrium points in N-person games, Proceedings of the National Academy of 
Sciences USA 36, 1950, 48-49 
 
Kali Rath, A direct proof of the existence of pure strategy equilibria in games with a continuum of 
players, Economic Theory 2, 1992, 427–433  
 
Karl Ritzberger and Jorgen W. Weibull, Evolutionary selection in normal form games, Econometrica 
63, 1995, 1371-1399  
 
Herbert Scarf and Terje Hansen, The Computation of Economic Equilibria, Yale University Press, 
1973 
 
David Schmeidler, Equilibrium points of nonatomic games, Journal of Statistical Physics 17, 1973, 
295-300  
 
Paul D. Taylor, Evolutionary stable strategies with two types of players, J. Applied Probability 16, 
1979, 76–83  
 
Gerard van der Laan and Adrian J. J. Talman, On the computation of fixed points in the product space 
of unit simplices and an application to noncooperative N-person games, Mathematics of Operations 
Research 7, 1982, 1–13  
 
Karl Vind, Edgeworth-allocations in an exchange economy with many traders, International 
Economic Review 5, 1964, 165–177  
 
Jorgen W. Weibull, Evolutionary Game Theory, 1995, MIT Press. 
 
Andrzej Wieczorek, Agnieszka Wiszniewska (Wiszniewska-Matyszkiel), A Game-Theoretic Model 
of Social Adaptation in an Infinite Population, Applicationes Mathematicae 25, 1999, 417-430  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14



Andrzej Wieczorek, Household Economies with Infinitely Many Agents: a Game-Theoretic Analysis, 
International Game Theory Review 4, 2002, 319-329  
 
Andrzej Wieczorek, Large Games with Only Small Players and Finite Strategy Sets, Applicationes 
Mathematicae 31, 2004, 79-96  
 
Andrzej Wieczorek, Large Games with Only Small Players and Strategy Sets in Euclidean Spaces, 
Applicationes Mathematicae 32, 2005, 183-193  
 
Andrzej Wieczorek, Fibonacci Numbers and Equilibria in “Large” Neighborhood Games, in: 
Advances in Dynamic Games and Their Applications, Series: Annals of the International Society of 
Dynamic Games 10, eds.: P. Bernhard, V. Gaitsgory, O. Pourtallier, 2009, 445-462  
 
Zaifu Yang, Computing Equilibria and Fixed Points, Springer, 1999  
 
 

15



Pracę zgłosił Jan Mielniczuk

Adres autora

Andrzej Wieczorek
Instytut Podstaw Informatyki PAN 
01-248 Warszawa, Jana Kazimierza 5 
e-mail: aw@ipipan.waw.pl

Symbol klasyfikacji rzeczowej MSC 2010: 
91A13, 91A10, 91A40, 91B38, 91B24, 91D25, 05C21, 11B39 

Printed as manuscript
Na prawach rȩkopisu
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