PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of viscous dissipation and thermoporesis on the flow over an exponentially stretching sheet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article analyses the influence of viscous dissipation and thermoporesis effects on the viscous fluid flow over a porous sheet stretching exponentially by applying convective boundary condition. The numerical solutions to the governing equations are evaluated using a local similarity and non-similarity approach along with a successive linearisation procedure and Chebyshev collocation method. The influence of the pertinent parameters on the physical quantities are displayed through graphs.
Rocznik
Strony
425--438
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
  • Department of Mathematics, National Institute of Technology Warangal-506004, Telangana State, INDIA
  • Department of Mathematics, National Institute of Technology Warangal-506004, Telangana State, INDIA
Bibliografia
  • [1] Sakiadis B.C. (1961): Boundary-layer equations for two-dimensional and axisymmetric flow. A.I.Ch.E. Journal, vol.7, No.1, pp.26-28.
  • [2] Sakiadis B.C. (1961): The boundary layer on a continuous flat surface. Vol.7, No.2, pp.221-225.
  • [3] Goldsmith P. and May F.G. (1966): Diffusiophoresis and thermophoresis in water vapour systems, Aerosol science. Academic Press, pp.163-194.
  • [4] Uddin Md. J., Khan W.A. and Ismail A.I. Md. (2012): Scaling group transformation for MHD boundary layer slip flow of a nanofluid over a convectively heated stretching sheet with heat generation. Mathematical Problems In Engineering, vol.2012.
  • [5] Shehzad S.A., Alsaedi A. and Hayat T. (2013): Influence of thermophoresis and Joule heaating on the radiative flow of Jeffrey fluid with mixed convection. Brazilian Journal of Chemical Engineering, vol.30, No.4, pp.897-908.
  • [6] Reddy M.G. (2014): Effects of thermophoresis, viscous dissipation and Joule heating on steady MHD flow over an inclined radiative isothermal permeable surface with variable thermal conductivity. Journal of Applied Fluid Mechanics, vol.7, No.1, pp.51-61.
  • [7] Sandeep S. and Sulochana C. (2016): Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption. Applied Nanoscience, vol.6, No.1, pp.131-139.
  • [8] Gebhart B. (1962): Effects of viscous dissipation in natural convection. Journal of Fluid Mechanics, vol.14, No.2, pp.225-232.
  • [9] Wong S.W., Awang M.A.O., Ishak A. and Pop I. (2012): Boundary layer flow and heat transfer over an exponentially stretching/shrinking permeable sheet with viscous dissipation. Journal of Aerospace Engineering, vol.27, No.1, pp.26-32.
  • [10] Das K. (2014): Influence of chemical reaction and viscous dissipation on MHD mixed convection flow. Journal of Mechanical Science and Technology, vol.28, No.5, pp.1881-1885.
  • [11] Megahed A.M. (2015): Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation. Appl. Math. Mech.
  • [12] Adeniyan A. and Adigun J.A. (2016): Similarity Solution of hydromagnetic flow and heat transfer past an exponentially stretching permeable vertical sheet with viscous dissipation, Joulean and viscous heating effects. ANNALS of Faculty Engineering Hunedoara - International Journal of Engineering, pp.113-120.
  • [13] Naiver C.L.M. (1827): Sur les lois du mouvement des uides. Memoires delAcademie Royale des Sciences, vol.6, pp.389-440.
  • [14] Merkin J.H. (1994): Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. International Journal of Heat and Fluid Flow, vol.15, No.5, pp.392-398.
  • [15] Gideon O.T. and Abah S.O. (2012): Plane stagnation double-diffusive MHD convective flow with convective boundary condition in a porous media. American Journal of Computational Mathematics, vol.2, pp.223-227.
  • [16] Mustafaa M., Hayat T. and Obaidat S. (2013): Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions. International Journal of Numerical Methods for Heat and Fluid Flow, vol.23, No.6, pp.945-959.
  • [17] Hayat T., Saeed Y., Alsaedi A. and Asad S. (2015): Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past an exponentially stretching sheet. PloS one, vol.10, No.9, e0133831.
  • [18] Rahman M., Rosca A.V. and Pop I. (2015): Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. International Journal of Numerical Methods for Heat and Fluid Flow, vol.25, No.2, pp.299-319.
  • [19] Mabood F., Khan W.A. and Ismail A.I. Md. (2015): Approximate analytical solution of stagnation point flow and heat transfer over an exponential stretching sheet with convective boundary condition. Heat Transfer-Asian Research, vol.44, No.4, pp.293-304.
  • [20] Khan J.A., Mustafa M., Hayat T. and Alsaedi A. (2015): Numerical study on three-dimensional flow of nanofluid past a convectively heated exponentially stretching sheet. Canadian Journal of Physics, vol.93, No.10, pp.1131-1137.
  • [21] Srinivasacharya D. and Jagadeeshwar P. (2017): Slip viscous flow over an exponentially stretching porous sheet with thermal convective boundary conditions. International Journal of Applied and Computational Mathematics, vol 3, No.4, pp.3525-3537.
  • [22] Talbot L., Cheng R.K., Schefer R.W. and Willis D.R. (1980): Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, vol.101, No.4, pp.737-758.
  • [23] Mills A.F., Xu Hang and Ayazi F. (1984): The effect of wall suction and thermophoresis on aerosol-particle deposition from a laminar boundary layer on a flat plate. International Journal of Heat and Mass Transfer, vol.27, No.7, pp.1110-1113.
  • [24] Tsai R. (1999): A simple approach for evaluating the effect of wall suction and thermophoresis on aerosol particle deposition from a laminar flow over a flat plate. International Communications in Heat and Mass Transfer, vol.26, No.2, pp.249-257.
  • [25] Sparrow E.M. and Yu H.S. (1971): Local non-similarity thermal boundary-layer solutions. Transactions of the ASME.
  • [26] Minkowycz W.J. and Sparrow E.M. (1974): Local nonsimilar solutions for natural convection on a vertical cylinder. Transactions of the ASME, pp.178-183.
  • [27] Srinivasacharya D. and Vijay Kumar P. (2015): Effect of thermal radiation and stratification on natural convection over an inclined wavy surface in a nanofluid saturated porous medium. International Journal of Mining, Metallurgy and Mechanical Engineering, vol.3, No.1.
  • [28] Awad F.G., Sibanda P., Motsa S.S. and Makinde O.D. (2011): Convection from an inverted cone in a porous medium with cross-diffusion effects. Computers and Mathematics with Applications, vol.61, pp.1431-1441.
  • [29] Canuto C., Hussaini M.Y., Quarteroni A. and Zang T.A. (2007): Spectral Methods-Fundamentals in Single Domains. Journal of Applied Mathematics and Mechanics, vol.87, No.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d35ff65-86ba-4cb3-a869-07a00c7148a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.