PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Corrosion behavior of Cr-Ni-Mo stainless steel in chemically modified chloride solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cr-Ni-Mo stainless steels are susceptible to the pitting in aggressive chloride environments. One of the possible ways for the influence of their corrosion behavior is the use of inhibitors as the chemical modification of the environment. The resistance of AISI 316Ti stainless steel to the pitting with/without the inorganic inhibitor was tested by two independent corrosion tests: 24-hours exposure immersion and potentiodynamic polarization test. Both tests were carried out in 1M chloride acidic solution with/without 0.1M molybdate inhibitor at room temperature. Results of immersion tests were evaluated by the corrosion rates calculated from corrosion losses and by the morphology of the pitting. Potentiodynamic polarization curves were evaluated by the pitting potentials.
Wydawca
Rocznik
Strony
299--304
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • University of Žilina, Slovakia
  • University of Žilina, Slovakia
  • University of Žilina, Slovakia
Bibliografia
  • 1. Baboian, R., 1995. Corrosion Test and Standards: Aplication and Interpretation, ASTM Manual Series, PA 19103, Philadelphia, USA.
  • 2.Brytan, Z., Niagaj R., Reiman L., 2016. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steels UNSS82441, Applied Surface Science, 388, 160-0168.
  • 3. Ebrahimi, N., Moayed, M.H., Davoodi, A., 2011. Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium, Corrosion Science, 53, 1278-1287.
  • 4. El Dahan, H.A., 1999. Pitting corrosion inhibition of 316 stainless steel in phosphoric acid-chloride solutions, Journal of Materials Science, 34, 851-857.
  • 5.Ilevbare, G.O., Burstein, G.T., 2003. The inhibion of pitting corrosion of stainless steels by chromate and molybdate ions, Corrosion Science, 45, 1545-1569.
  • 6.Jambor, M., Nový, F., Bokůvka, O., Trško, L., Oravcová, M., 2018. Influence of structure sensitising of the AISI 316Ti austenitic stainless steel on the ultra-high cycle fatigue properties, MATEC Web of Conferences, 157, 05011.
  • 7. Jessen, C.Q. 2011. Stainless Steel and Corrosion, Denmark, Damstahl.
  • 8. Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D., Schmidová, E., 2018. Role of Chemical Composition in Corrosion of Aluminum Alloys, Metals 8, 8, 581.
  • 9.Lipinsky, T., 2019. Corrosion of the 1.4362 duplex stainless steel in a nitric acid environment at 333 K, Acta Physica Polonica A, 135, 2, 203-206.
  • 10.Liptáková, T., 2009. Bodová korózia nehrdzavejúcich ocelí (Pitting corrosion of stainless steels), EDIS – Žilinská univerzita, Žilina.
  • 11.Oravcová, M., Palček, P., Chalupová, M., Uhríčik, M., 2018. Temperature dependent measurement of internal damping of austenitic stainless steels, MATEC Web of Conferences, 157, 07008.
  • 12.Oršulová, T., Palček, P., Roszak, M., Uhríčik, M., Kúdelčík, J., 2018. Change of magnetic properties in austenitic stainless steels due to plastic deformation, Procedia Structural integrity, 13, 1689-1694.
  • 13.Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Carboneras, M., Arrabal, R., 2007. Influence of Ti, C and N concentration on the intergranular corrosion behavior of AISI 316Ti and 321 stainless steels, Acta Materialia, 55, 2239-2251.
  • 14.Szklarska-Smialowska, Z., 2005. Pitting and crevice corrosion, Nace, Houston.
  • 15.Refaey, S.A.M., Abd El-Rehim, S.S., Taha, F., Saleh, M.B. Ahmed, R.A., 2000. Inhibition of chloride localized corrosion of mild steel by PO4 3- , CrO4 2- , MoO4 2- , and NO2 - anions, Applied Surface Science, 158, 190-196.
  • 16.Zatkalíková, V., Iwaniak, A., Markovičová, L., Uhríčik M., Hanusová P., 2020. Corrosion resistance of the chemically treated austenitic stainless steel in relation to temperature, Przemysl Chemiczny, 99, 6, 844-847.
  • 17.Zatkalíková, V., Markovičová, L., Škorvanová, M., 2017. Corrosion Behaviour of Electropolished AISI 316L Austenitic Biomaterial in Physiological Solution, IOP Conference Series: Materials Science and Engineering, 266, 012 016.
  • 18.Zuo, Y., Wang, H., Zhao, J., Xiong, J., 2002. The effects of some anions on metastase pitting of AISI 316L stainless steel, Corrosion Science, 44, 13-24.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d34b3ad-286b-4c5e-b893-edc673df4228
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.