Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A2B2O7 oxides with pyrochlore or defected fluorite structure are among the most promising candidates for insulation layer material in thermal barrier coatings. The present paper presents the procedure of synthesis of holmium zirconate Ho2Zr2O7 and praseodymium zirconate Pr2Zr2O7 via Polymerized-Complex Method (PCM). Thermal analysis of precursor revealed that after calcination at relatively low temperature (700°C) fine-crystalline, single-phase material is obtained. Thermal diffusivity was measured in temperature range 25-200°C, Ho2Zr2O7 exhibits lower thermal diffusivity than Pr2Zr2O7. Additionally, PrHoZr2O7 was synthesized. The powder in as-calcined condition is single-phase, but during the sintering decomposition of solid solution took place and Ho-rich phase precipitated. This material exhibited the best insulating properties among the tested ones.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1249--1254
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
- [1] M. A. Subramanian, et al., Solid State Chem. 15, 55 (1983).
- [2] M. Toshihiroet al., Solid State Ionics 40-41, 357 (1990).
- [3] http://abulafia.mt.ic.ac.uk/shannon/ptable.php.
- [4] W. Pan, et al., Thermochim. Acta 455, 16 (2007).
- [5] X. Xie, et al., J. Eur. Ceram. Soc. 31, 1677 (2011).
- [6] H. Chen, et al., J. Alloy. Compd. 480, 843 (2009).
- [7] S. Wang, et al., J. Eur. Ceram. Soc. 35, 105 (2015).
- [8] A. F. Redkin, et al., Phys. Chem. of Minerals 40, 733 (2013).
- [9] M. Kakihana, et al., J. Appl. Phys. 71, 3904 (1992).
- [10] J. Wu, et al., J. Am. Ceram. Soc. 35, 3013 (2002).
- [11] G. Moskal, et al., J. Eur. Ceram. Soc. 32, 2025 (2012).
- [12] K. W. Schlichting, et al., J. Mater. Sci. 36, 3003 (2001).
- [13] C. L. Wan, et al., Phys. Rev B 74, 144109 (2006).
- [14] A. V. Shlyakhtina, et al., Solid State Ionics 176, 2297 (2005).
- [15] G. Adachi, N. Imanaka, Z. C. Kang (Eds.), Binary Rare Earth Oxides, 2005 Springer.
- [16] T. Tojo, et al., J. Chem. Thermodyn. 31, 831 (1999).
- [17] Z. G. Liu, et al., J. Alloy. Compd. 475, 21 (2009).
- [18] O. Fabrichnaya, et al., Thermochim. Acta 558, 74 (2013).
- [19] Y. Zhang, et al., Mater. Res. Bull 64, 175 (2015).
- [20] C. Wan, et al., J. Am. Cer. Soc. 94, 592 (2011).
- [21] K. H. Kwak, et al., Mater. Lett. 65, 2937 (2011).
- [22] A. D. McConnel, et al., Annual Rev. Heat Transfer 14, 129 (2005).
- [23] S. Fayette, et al., J. Eur. Ceram. Soc. 20, 297 (2000).
- [24] D. Smith, et al., J. Am. Cer. Soc. 86, 105 (2003).
- [25] H. Chen, et al., J. Alloy. Compd. 480, 843 (2009).
Uwagi
EN
This work was supported by Institute of Materials Science of Silesian University of Technology, as a part of Statutory Research no BK220/RM3/2015 (11/030/BK-15/0025)
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d2fc90d-9e72-43e1-81f5-9bbcd6e612ec