Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Physics-based optical flow models have been successful in capturing the deformities in fluid motion arising from digital imagery. However, a common theoretical framework analyzing several physics-based models is missing. In this regard, we formulate a general framework for fluid motion estimation using a constraint-based refinement approach. We demonstrate that for a particular choice of constraint, our results closely approximate the classical continuity equation-based method for fluid flow. This closeness is theoretically justified by augmented Lagrangian method in a novel way. The convergence of Uzawa iterates is shown using a modified bounded constraint algorithm. The mathematical well-posedness is studied in a Hilbert space setting. Further, we observe a surprising connection to the Cauchy-Riemann operator that diagonalizes the system leading to a diffusive phenomenon involving the divergence and the curl of the flow. Several numerical experiments are performed and the results are shown on different datasets. Additionally, we demonstrate that a flow-driven refinement process involving the curl of the flow outperforms the classical physics-based optical flow method without any additional assumptions on the image data.
Czasopismo
Rocznik
Tom
Strony
17--43
Opis fizyczny
Bibliogr. 22 poz., il., rys., wykr.
Twórcy
autor
- Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning, Andhra Pradesh, India
autor
- Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning, Andhra Pradesh, India
Bibliografia
- [1] P. Altomare, S. Milella, G. Musceo. Multiplicative Perturbation of the Laplacian and Related Approximation Problems, Journal of Evolution Equations, 771-792, 2011. doi:10.1007/s00028-011-0110-6.
- [2] G. Aubert, R. Deriche, P. Kornprobst. Computing Optical Flow via Variational Techniques, SIAM Journal of Applied Mathematics, 60:156-182, 1999. doi:10.1137/S0036139998340170.
- [3] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. doi:10.1007/978-0-387-70914-7.
- [4] T. Corpetti, E. Mémin, P. Pérez. Estimating Fluid Optical Flow, Proceedings of the 15th International Conference on Pattern Recognition (ICPR2000), 3:1033-1036, 2000. doi:10.1109/ICPR.2000.903722.
- [5] T. Corpetti, D. Heitz, G. Arroyo, E. Mémin, A. Santa-Cruz. Fluid Experimental Flow Estimation based on an Optical Flow Scheme, Experiments in Fluids, 40:80-97, 2006. doi:10.1007/s00348-005-0048-y.
- [6] X. Chen, P. Zillé, L. Shao, T. Corpetti. Optical Flow for Incompressible Turbulence Motion Estimation, Experiments in Fluids, 56:8, 2015. doi:10.1007/s00348-014-1874-6.
- [7] P. Eidus, The Perturbed Laplace Operator in a weighted L2 space, Journal of Functional Analysis, 100:400-410, 1991. doi:10.1016/0022-1236(91)90117-N.
- [8] J. Carlier, R. Cemagref. FLUID. Image sequence database. http://fluid.irisa.fr/data-eng.htm (Accessed: December 2023).
- [9] J. Carlier. Second set of fluid mechanics image sequences. European project FLUid Image analysis and Description, 2005. https://cordis.europa.eu/project/id/513663.
- [10] R. Glowinski, P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, 1989. doi:10.1137/1.9781611970838.
- [11] D. Heitz, E. Mémin, C. Schnörr. Variational Fluid Flow measurements from Image Sequences: Synopsis and Perspectives, Experiments in Fluids, 48:369-393, 2010. doi:10.1007/s00348-009-0778-3.
- [12] W. Hinterberger, O. Scherzer, C. Schnörr, J. Weickert. Analysis of Optical Flow Models in the Framework of Calculus of Variations, Numerical Functional Analysis and Optimization, 23(1-2):69-89, 2002. doi:10.1081/NFA-120004011.
- [13] B. K. P Horn, B. G. Schunck. Determining Optical Flow, Artificial Intelligence, 17:185-203, 1981. doi:10.1016/0004-3702(81)90024-2.
- [14] T. Liu. OpenOpticalFlow: An Open Source Program for Extraction of Velocity Fields from Flow Visualization Images, Journal of Open Research Software, 5:29, 2017. doi:10.5334/jors.168.
- [15] T. Liu, L. Shen. Fluid Flow and Optical Flow, Journal of Fluid Mechanics, 614:253-291, 2008. doi:10.1017/S0022112008003273.
- [16] A. Luttman, E. M. Bollt, R. Basnayake, S. Kramer, N. B. Tufillaro. A Framework for Estimating Potential Fluid Flow from Digital Imagery, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23:3, 2013. doi:10.1063/1.4821188.
- [17] J. Nocedal, S. J. Wright. Numerical Optimization, 2nd Edition, Springer, 2006. doi:10.1007/b98874.
- [18] C. Schnörr. Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class, International Journal of Computer Vision, 6:25-38, (1991). doi:10.1007/BF00127124.
- [19] B. Wang, Z. Cai, L. Shen, T. Liu. An Analyis of Physics-based Optical Flow, Journal of Computational and Applied Mathematics, 276:62-80, 2015. doi:10.1016/j.cam.2014.08.020.
- [20] J. Weickert, C. Schnörr. A Theoritical Framework for Convex Regularizers in PDE-based Computation of Image Motion, International Journal of Computer Vision, 45:245-264, 2001. doi:10.1023/A:1013614317973.
- [21] R. P. Wildes, M. J. Amabile, A. Lanzillotto, T. Leu. Recovering Estimates of Fluid Flow from Image Sequence Data, Computer Vision and Image Understanding, 80:246-266, 2000. doi:10.1006/cviu.2000.0874.
- [22] T. Liu. OpenOpticalFlow. GitHub repository, 2021. https://github.com/Tianshu-Liu/OpenOpticalFlow (Accessed: December 2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d27a28e-08d8-44fe-ad06-e62b3d638e41