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Abstract Physics-based optical flow models have been successful in capturing the deformities in
fluid motion arising from digital imagery. However, a common theoretical framework analyzing sev-
eral physics-based models is missing. In this regard, we formulate a general framework for fluid motion
estimation using a constraint-based refinement approach. We demonstrate that for a particular choice
of constraint, our results closely approximate the classical continuity equation-based method for fluid
flow. This closeness is theoretically justified by augmented Lagrangian method in a novel way. The
convergence of Uzawa iterates is shown using a modified bounded constraint algorithm. The mathemat-
ical well-posedness is studied in a Hilbert space setting. Further, we observe a surprising connection to
the Cauchy-Riemann operator that diagonalizes the system leading to a diffusive phenomenon involving
the divergence and the curl of the flow. Several numerical experiments are performed and the results
are shown on different datasets. Additionally, we demonstrate that a flow-driven refinement process
involving the curl of the flow outperforms the classical physics-based optical flow method without any
additional assumptions on the image data.
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1. Introduction

Variational models for motion estimation have always been one of the central topics in
mathematical image processing. Since the seminal work of Horn and Schunck [13] on
the variational approach to optical flow motion estimation, many in-depth studies on
this topic have been done by developing different variational models of optical flow to
obtain useful insights into motion estimation (e.g. [2,12,18,20]). Many of these literature
works on motion estimation have been focused on the constancy assumption, e.g., the
brightness constancy leading to an algebraic equation, in (u, v) the motion components,
called the optical flow constraint (OFC):

fτ + fxu+ fyv = 0 , (1)

where f(x, y, τ) is the image sequence f : Ω × [0,∞) → R for an open bounded set
Ω ⊂ R2, (x, y) are the spatial coordinates and τ is the time variable. However, constancy
assumptions can’t reflect the reality of actual motion because deformation effects of fluid,

Machine GRAPHICS & VISION 32(3-4):17–43, 2023. DOI: 10.22630/MGV.2023.32.3.2 .

https://orcid.org/0000-0002-2735-0735
https://orcid.org/0000-0001-9991-4846
mailto:hd92sssihl.psn[at]gmail.com
https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.2


18 A framework for fluid motion estimation. . .

illumination variations, perspective changes, poor contrast etc. would directly affect the
important motion parameters. For this reason, physics-dependent motion estimation
algorithms have been widely investigated.

1.1. Related Works

A relatively recent work of Corpetti et al. [4,5,6] used the image-integrated version of the
continuity equation from fluid dynamics. Since then, there has been a lot of attention
on studying physics-based motion estimation. Estimates on the conservation of mass
for a fluid in a digital image sequence were discussed by Wildes et al. [21]. The image
intensity was obtained as an average of the object density, with the incident light parallel
to z-axis such that the 2D projection of the image intensity can be captured as

f(x, y, τ) =

∫ z2

z1

ρ(x, y, z, τ) dz .

Further using fluid mechanics models, Liu et al. [19] provided a rigorous framework for
fluid flow by deriving the projected motion equations. Here the optical flow is propor-
tional to the path-averaged velocity of fluid or particles weighted with a relevant field
quantity. In this approach the authors assume that the control surface is planar, there is
no particle diffusion by a molecular process, and the rate of accumulation of the particle
in laser sheet illuminated volume is neglected, the equations, after neglecting these terms
one obtains the continuity equation again. Luttman et al. [16] computed the potential
(resp. stream) function directly by assuming that the flow estimate is the gradient of
a potential function (resp. symplectic gradient of a stream function). To overcome the
limitations of the global smoothness regularization for fluid motion estimation, Corpetti
et al. [5] proposed a second-order div-curl regularization for a better understanding of
intrinsic flow structures. A detailed account of various works in fluid flow based on
physics is given in [11]. Here the authors observed a physical meaning associated with
the terms of the continuity equation (CEC):

fτ + fxu+ fyv︸ ︷︷ ︸
(a)

+ f(ux + vy)︸ ︷︷ ︸
(b)

= 0 , (2)

where (a) corresponds to the brightness constancy given in (1) and (b) is the non-
conservation term due to loss of particles. Furthermore, a divergence-free approximation
of the equation (2) can be obtained by setting the term (b) to zero. It is thus natural
to study the effect of the term (b) in extracting the inherent fluid properties of the flow.

1.2. Our Contribution

In the current work, we develop a generic physics-based framework for fluid motion
estimation for capturing intrinsic spatial characteristics and vorticities. It consists of a
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two-step technique to compute fluid motion from a sequence of scalar fields or illuminated
particles transported by the flow. The technique proposed consists in filtering with an
appropriate semi-group the divergence of an initial velocity field estimated through a
classical Horn and Schunck (HS) estimator. The vorticity of the initial solution is kept
constant while the flow is transformed through its divergence in order to obey a continuity
equation for the brightness data which has been used in several optical flow estimators
dedicated to fluid flow.

In particular, our method uses a constraint-based refinement approach. As men-
tioned above, in the two-step technique, the first requirement is an initial flow estimate
(u0, v0) that obeys the classical optical flow principles like brightness constancy and
pixel correspondence. This estimate may not be able to capture the underlying geomet-
ric features of the fluid flow. The main idea is to perform a refinement over this crude
estimate to capture precise flow structures driven by additional constraints specific to
applications. As a concrete example, we choose the initial estimate coming from the
Horn and Schunck model [13]. It is well-known that this model is not well-suited for
fluid motion estimation. In fact the global smoothness regularization damps both the
divergence and vorticity of the motion field. We show in particular how this model can
be adapted and refined through our approach. A special feature of our model is the
diagonalization by the Cauchy-Riemann operator leading to a diffusion on the curl and
a multiplicative perturbation of the laplacian on the divergence of the flow.

There are two main advantages of our method. Firstly, from a theoretical perspec-
tive it provides us with an evolutionary PDE setup which allows a rigorous mathemat-
ical framework for the well-posedness discussion. Secondly, the contractive semigroup
structure on the divergence leads to a simpler numerical analysis. A modified bounded
constraint algorithm [17] is employed to theoretically show the convergence of the dual
variable introduced by the augmented Lagrangian formulation. The inner iterations of
the algorithm use the contractive semigroup of the elliptic term. This approach thus
allows us to build a quantitative connection between the optical flow and the fluid flow
for various flow visualizations which is often a key problem.

The paper is organized as follows. In Section 2, we give a detailed description of
our model. Section 3 is devoted to the mathematical framework. Here we discuss
the mathematical well-posedness and the regularity of the solutions. We also show
the diagonalization process under the application of the Cauchy-Riemann operator. In
Section 4, we show how for a particular choice of additional constraints, our model closely
approximates the continuity equation model using a modified augmented Lagrangian
formulation. We also employ the bounded constraint algorithm to show the convergence
of the Uzawa iterates. Finally, in Section 5, we show our results on different datasets.
Section 3.3 concludes the paper.
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2. Description of the Model

2.1. General Formulation

Our general formulation is given as

JR(u) = β

∫
Ω

ϕ(f)ψ(∇u) + α

∫
Ω

{|∇u|2 + |∇v|2} , (3)

where the constants α, β are weight parameters, the function ψ depends on the compo-
nents of the flow and its derivatives which essentially captures the underlying geometric
structures and the function ϕ corresponds to an image-dependent weight term. A few
possible combinations are summarized in Table 1.

As seen from the table, the function ϕ dictates whether the refinement process is
image-driven or flow-driven. When ϕ(f) = 1, there is no influence of the image data on
the additional constraint. As a result, the refinement process is completely flow-driven.
We assume that both the functions ϕ and ψ are real-valued smooth functions. Moreover,
we assume ϕ(f) to be a monotone-increasing function. The first term of JR(u) captures
the non-conservation term that violates the constancy assumptions and the second term
is the L2 regularization which governs the diffusion phenomena. In the current work, we
particularly focus on the case where ψ = (∇ · u)2, i.e. where the function ψ penalizes
the divergence of the flow. In this case, the refinement functional becomes

JR(u) = β

∫
Ω

ϕ(f)(∇ · u)2 + α

∫
Ω

{|∇u|2 + |∇v|2} . (4)

2.2. Additional Constraint Involving the Curl of the Flow

In Table 1 we have suggested two such choices for ψ, one penalizing the divergence of
the flow and the other penalizing the curl. The operator ∇H := (∂y,−∂x) is called the
orthogonal gradient, also referred to as the symplectic gradient in the literature [16].

Tab. 1. Some choices for the functions ϕ and ψ

ϕ(f) ψ(∇u) Nature of the model

f2 (∇ · u)2 Anisotropic, image-driven, penalizing divergence of the flow

1 (∇ · u)2 Isotropic, flow-driven, penalizing divergence of the flow

f2 (∇H · u)2 Anisotropic, image-driven, penalizing curl of the flow

1 (∇H · u)2 Isotropic, flow-driven, penalizing curl of the flow
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This geometric constraint captures the rotational aspects of the flow better. In this
work, we will particularly demonstrate that a flow-driven refinement process involving
the curl of the flow outperforms the classical physics-based optical flow method without
any additional assumptions on the image data.

3. Mathematical Framework

3.1. Diagonalization of the System

The associated system of PDEs for the variational formulation is given as:

∂u

∂t
= ∆u+ a0

∂

∂x
[ϕ(f)(ux + vy)] in Ω× (0,∞) ,

∂v

∂t
= ∆v + a0

∂

∂y
[ϕ(f)(ux + vy)] in Ω× (0,∞) ,

u(x, y, 0) = u0 in Ω ,

v(x, y, 0) = v0 in Ω ,

u = 0 on ∂Ω× (0,∞) ,

v = 0 on ∂Ω× (0,∞) .

(5)

Here (u0, v0) is the initial flow estimate obtained from the pixel correspondence, a0 = β/α
is a positive constant. Since there is no pixel motion at the boundary, it is natural to
work with Dirichlet boundary conditions. We will show that the system (5) can be
diagonalized by an application of Cauchy-Riemann operator. This special feature is
intriguing as well as of great advantage for later analysis. Let us first rewrite the system
(5) as

∂u

∂t
= Au , (6)

where

∂u

∂t
=

∂u
∂t

∂v
∂t

 , Au =

∆u+ a0
∂
∂x [ϕ(f)(ux + vy)]

∆v + a0
∂
∂y [ϕ(f)(ux + vy)]

 .
As we are in the Sobolev setting, the derivatives are taken in a distributional sense.
Thus, a key observation is that the order of derivatives can be interchanged. Let us
denote by R the Cauchy-Riemann operator matrix

R =

[
∂y −∂x

∂x ∂y

]
.
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Acting R on both sides of (6) leads to

R
(∂u
∂t

)
= RAu .

This leads to the following transformation of the original coupled system

[
∂y −∂x

∂x ∂y

]∂u
∂t

∂v
∂t

 =

[
∂y −∂x

∂x ∂y

]∆u+ a0
∂
∂x [ϕ(f)(ux + vy)]

∆v + a0
∂
∂y [ϕ(f)(ux + vy)]



=

[
∆ 0

0 ∆ ◦ k

][
∂y −∂x

∂x ∂y

][
u

v

]
,

where, with a slight abuse of notation we denote k for the function 1 + a0ϕ(f) and
for the multiplicative operator x 7→ kx. Since ϕ is a bounded function and a0 > 0,
the multiplicative term k is bounded and strictly positive. We have thus obtained the
following decoupling:

∂

∂t
(Ru) = DRu , (7)

where

D =

[
∆ 0

0 ∆ ◦ k

]
, R =

[
∂y −∂x

∂x ∂y

]
.

The application of the Cauchy-Riemann operator R on the system has resulted in the
following relation

D = RAR−1.

The operator A has been diagonalized by the matrix R. The decoupled system (7) thus
takes the following form: 

∂ξ

∂t
= ∆ξ ,

∂ζ

∂t
= ∆(kζ) ,

(8)

where ξ := uy − vx is the curl and ζ := ux + vy is the divergence of the flow and
k = 1 + a0ϕ(f) is a multiplicative factor.

Machine GRAPHICS & VISION 32(3-4):17–43, 2023. DOI: 10.22630/MGV.2023.32.3.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.2


H. Doshi, U. K. Nori 23

3.2. Multiplicative Perturbation of the Laplacian

Let us consider the divergence equation from (8)

∂ζ

∂t
= ∆(kζ) , (9)

where k = 1+ a0ϕ(f). We make a change of variable η = kζ. This transformation leads
to the equation:

∂η

∂t
= k∆η . (10)

The operator k∆ is the multiplicative perturbation of the laplacian. It arises in many
physical phenomena e.g. in the theory of wave propagation in non-homogeneous media.
The operator has been studied in appropriate weighted function spaces see [1,7]. In our
case the multiplicative perturbation k∆ leads to an image driven perturbation because of
the k factor which depends on the image f . The authors in [1] derive an approprixation
for the kernel of the associated semigroups by positive linear integral operators

Gm(f)(x) =
( m

4πk(x)

)n/2
∫
Rn

f(y) exp
(
− m

4k(x)
|x− y|2

)
dy . (11)

Using the above kernel one can design an appropriate stencil for convolution. It is also
interesting to note that the stencil size varies with respect to the image intensity. This
aspect we will discuss in a forthcoming paper. Let us now consider the Gaussian kernel
associated with the operator k∆

Gk(x, t) :=
1

4πk(x)t
exp

(
− |x|2

4k(x)t

)
.

The perturbation k plays an important role in controlling the rate of diffusion. If k is
large then the Gaussian becomes broader and shorter and if it is small then the Gaussian
is thinner and taller. Since Ω is bounded, the perturbation k is bounded. Hence there
exists a1, a2 > 0 such that a1 ≤ k(x) ≤ a2. Using this fact, we can obtain the following
bound on Gk(x, t).

Lemma 3.1. Let n = 2. Then

∥Gk(x, t)∥p ≤ Ckt
(1−p)/p ,

where the constant

Ck =
1

4πa1

(4πa2
p

)1/p

.

Machine GRAPHICS & VISION 32(3-4):17–43, 2023. DOI: 10.22630/MGV.2023.32.3.2 .

https://mgv.sggw.edu.pl
https://doi.org/10.22630/MGV.2023.32.3.2


24 A framework for fluid motion estimation. . .

3.3. Wellposedness and Regularity

Let us now consider the abstract IVP associated with the first equation in (8):
dξ

dt
+A1ξ = 0 on [0,∞) ,

ξ(0) = ξ0 ∈ L2(Ω) .

(12)

where the initial data

ξ0 = ∂yu0 − ∂xv0 ,

and (u0, v0) is the Horn and Schunck optical flow. Here A1 : D(A1) → H1 is an (un-
bounded) operator

D(A1) = {ξ ∈ H2(Ω) ∩H1
0 (Ω) : A1ξ ∈ L2(Ω)} ,

H1 = L2(Ω) ,

A1ξ := −∆ξ.

The operator A1 is maximal monotone and symmetric. Hence it is self adjoint. For the
well-posedness of the problem (12) we refer to (Theorem 7.7 and 10.1 in [3]). Similarly,
the abstract IVP for the second equation becomes

dη

dt
+A2η = 0 on [0,∞) ,

η(0) = η0 ∈ L2(Ω) .

(13)

where the initial data

η0 = k(∂xu0 + ∂yv0) ,

is the weighted divergence of the Horn and Schunck optical flow. Here A2 : D(A2)→ H2

is the (unbounded) operator
D(A2) = {η ∈ H2(Ω) ∩ (H1

0 )k(Ω) : A2η ∈ L2
k(Ω)} ,

H2 = L2
k(Ω) ,

A2η = −k∆η .

Also η0 ∈ L2(Ω). Here the operator k∆ is a multiplicative perturbation of the laplacian
where k is bounded and strictly positive since ϕ is a monotone increasing function. The
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problem will be studied in weighted Sobolev space H2 following a similar approach as
in [7]. The space H2 is a Hilbert space equipped with the inner product

⟨w1, w2⟩H2
:=

∫
Ω

1

k
w1w2 dx

and the norm

∥w∥2H2
=

∫
Ω

1

k
|w|2 dx .

Similarly the Hilbert space H3 := (H1
0 )k(Ω) has the norm [7]

∥w∥2H3
:= ∥w∥2H2

+ ∥∇w∥2H1
=

∫
Ω

(1
k
|w|2 + |∇w|2

)
.

The operator A2 is symmetric and maximal monotone. It is also interesting to note that
in our context the weight term k in H2 is actually dependent on the image f - bringing
in an anisotropy into the discussion. Thus H2 is an image dependent Sobolev space.
When ϕ(f) is a constant function, i.e. the case where the refinement is independent of
the image, the norms || · ||H1

and || · ||H2
coincide upto a constant. In our context, as the

values of the image are bounded, k is a bounded function. Also in the pre-processing
stage since the images are smoothened with a Gaussian filter we can further assume that
k is smooth. We will prove a result on the regularity of the solution for any non-zero
time in the diffusion process.

Theorem 3.1. Let η0 ∈ H1. Then the solution of the problem (13) satisfies

η ∈ C1((0,∞),H2) ∩ C([0,∞), H2(Ω) ∩H3) .

For any ϵ > 0 we also have
η ∈ C∞([ε,∞)× Ω) . (14)

Moreover, η ∈ L2((0,∞),H3) , and

1

2
∥η(T )∥2H1

+

∫ T

0

∥∇η(t)∥2H1
dt =

1

2
∥η0∥2H2

(15)

holds for T > 0.

Proof.We only show the energy estimates as the remaining part of the proof follows very
closely to the proof of theorem 10.1 in [3]. It is clear that the operator A2 is symmetric
and maximal monotone. Hence it is self-adjoint. Therefore, by Theorem 7.7 in [3], we
have

η ∈ C1((0,∞),H2) ∩ C([0,∞), H2(Ω) ∩H3) .
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Define σ(t) = 1
2∥η(t)∥

2
H2

. Since η ∈ C1((0,∞),H2) it is clear that σ is C1 on (0,∞).
Therefore

σ′(t) =
〈
η(t),

dη

dt
(t)

〉
H2

=
〈
η(t), k∆η

〉
H2

=
〈
η(t),∆η

〉
H1

= −∥∇η(t)∥2H1
.

Integrating from ε to T where 0 < ε < T <∞ we get

σ(T )− σ(ε) = −
∫ T

ε

∥∇η(t)∥2H1
dt .

Again as η ∈ C((0,∞),H2(Ω)) we have σ(ε)→ σ(0) = 1
2∥η0∥

2
H2

as ε→ 0. Therefore in
the limiting case we obtain

σ(T ) +

∫ T

0

∥∇η(t)∥2H1
dt =

1

2
∥η0∥2H2

,

and (15) holds. Integrating the Hilbert space (H1
0 )k(Ω) norm defined above from 0 to T

we get ∫ T

0

∥η(t)∥2(H1
0 )k

dt =

∫ T

0

∥η(t)∥2H2
dt+

∫ T

0

∥∇η(t)∥2H1
dt

= 2

∫ T

0

σ(t) dt+

∫ T

0

∥∇η(t)∥2H1
dt

≤ 2

∫ T

0

σ(t) dt+
1

2
∥η0∥2H2

.

This shows that

η ∈ L2((0,∞),H3) .

4. A special Case: Approximating the Continuity Equation Model

In this section we show that for a specific choice of the additional constraint ϕ(f) = f2,
ψ = (∇ · u)2, our model closely approximates the CEC based model. We justify this
theoretically using the modified augmented Lagrangian framework.
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4.1. The Augmented Lagrangian Framework

Let V = H1(Ω)×H1(Ω) and H = L2(Ω) denote the Hilbert spaces with the respective
norms ∥ · ∥V , ∥ · ∥H. For simplicity, we fix α = β = 1. Recall that our refinement model
evolves over an initial estimate for which the pixel correspondence problem is already
solved upto a certain level. This means that the optical flow constraint (OFC) is satisfied
by the flow estimate. Taking this into account we recast the variational problem to a
constrained minimization problem:

min
u
JR(u) =

∫
Ω

(f∇ · u)2 +
∫
Ω

(|∇u|2 + |∇v|2) , (16)

subject to the constraint
Bu := ∇f · u = −ft =: c . (17)

where µR > 0 and λ1 ∈ H is the Lagrange multiplier. The associated augmented
Lagrangian for the problem (16)-(17) is:

LµR
(u, λ1) = JR(u) +

µR

2
∥Bu− c∥2 + ⟨λ1, Bu− c⟩ . (18)

Since OFC is a divergence-free approximation of the continuity equation data term, a
similar constrained minimization problem can be considered:

min
u
JC(u) =

∫
Ω

(ft +∇ · (fu))2 +
∫
Ω

(|∇u|2 + |∇v|2) , (19)

subject to the constraint
Bu = c . (20)

The associated augmented Lagrangian for the problem (19)-(20) is:

LµC
(u, λ1) = JC(u) +

µC

2
∥Bu− c∥2 + ⟨λ1, Bu− c⟩ . (21)

We observe that
JC(u) = JHS(u) + JR(u) +K(u) ,

where JHS denotes the Horn and Schunck functional [13] and

K(u) = 2

∫
Ω

(Bu− c)(f∇ · u) .

By the Cauchy-Schwarz inequality we have |K(u)|2 ≤ 2∥Bu− c∥2L2∥f∇ · u∥2L2 . Thus,

JC(u) = JR(u) +O(
√
ϵ) whenever ∥Bu− c∥L2 = O(ϵ) . (22)
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Heuristically arguing, we can take motivation from (22) and adopt a two-phase strategy
where we first determine the minimizer of JHS and use this minimizer as an initial condi-
tion in the evolutionary PDE associated with (3). Although our model is not derived by
rigorous fluid mechanics, we still demonstrate that our results closely approximate the
physics-based models for this particular choice of the functions ϕ and ψ. The first step
is to show the equivalence of the variational problem with the associated saddle point
problem, see [10, Chapter 3] for further discussions.

Lemma 4.1. (u, λ) is a saddle point of (21) iff u solves the variational problem
(19)-(20).

Observe that the augmented Lagrangian (21) can be reformulated as

LµC
(u, λ1) = JR(u) +

µC

2
∥Bu− c∥2 + ⟨λ1 + 2f∇ · u, Bu− c⟩ . (23)

The parameters µC , µR can be chosen as large as necessary. The lagrange multiplier λ1
which acts as a dual variable is obtained by the Uzawa iteration

λ
(n+1)
1 = λ

(n)
1 + 2fd(n) + ρ(n)(Bu(n) − c) , (24)

where d(n) = ∇ · u(n) and ρ(n) is a tuning parameter. To show the equivalence of
the two unconstrained optimization problems it is necessary to show that the Lagrange

multipliers {λ(n)1 } converge. For this, we rely upon the techniques of bounded constraint
algorithm, see [17, Chapter 17] for more details.

4.2. The Bounded Constraint Algorithm

The starting point is the crude pixel correspondence obtained from the Horn and Schunck
optical flow u(0) obtained within a tolerance limit δHS prescribed by Liu-Shen [15].
Observe that when the optical flow constraint is exactly satisfied then the formulations
(16) and (19) coincide. However in reality due to numerical errors and approximations,
the constraints are never exactly met. Thus it is natural to look at the equality constraint

Bu = c as a bounded constraint ∥Bu− c∥H ≤ ϵ(n)1 where ϵ
(n)
1 is a threshold parameter.
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Algorithm 1 Bounded Constraint Algorithm

1: Set λ(0), ρ(0). Choose ϵ
(0)
1 , ϵ

(0)
2 .

2: Obtain initial HS optical flow u(0).
3: for n = 1, 2, . . . until convergence do
4: update u(n), d(n)

5: if ∥Bu(n) − c∥H ≤ max{ϵ(n)1 , 2δHS} then

6: if ∥fd(n)∥H ≤ ϵ(n)2 then
7: break;
8: else
9: update λ

(n)
1 by (24)

10: ρ(n+1) ← ρ(n)

11: tighten tolerances ϵ
(n+1)
1 , ϵ

(n+1)
2

12: else
13: update Bu(n) − c
14: λ(n+1) ← λ(n)

15: ρ(n+1) ← 100ρ(n)

16: tighten tolerances ϵ
(n+1)
1 , ϵ

(n+1)
2

The Algorithm 1 can be viewed in two phases. In the first phase, it is purely a
diffusion process while in the second phase, the bounded constraint approximates the
continuity equation constraint. This happens because a part of the OFC is already
embedded in the CEC. The relaxation δHS is allowed so that we do not move too far
away from the constraint and to ensure that the tolerance ϵ

(n)
1 does not become too

small.

4.3. Description of the Bounded Constraint Algorithm

The initial Horn and Schunck (HS) estimate u(0) first obtained. The updates u(n) in
step 4 are obtained by discretizing the Euler-Lagrange equations:

Pu(n+1) = bu(n) , (25)

where

P :=

α+ 2βf2

∆x2 0

0 α+ 2βf2

∆y2

 , bu(n) =

α(M ∗ u(n)) + β ∂
∂x [f

2d(n)]

α(M ∗ v(n)) + β ∂
∂y [f

2d(n)]

 , (26)

∆x,∆y are grid step sizes andM is the nine-point approximation stencil of the Laplacian.
d(n) is updated by the relation

d(n) = S(t)d(n−1) ,
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where the map S(t) : u0 7→ u(t) := Gk(·, t) ∗ u0 form a linear, continuous semigroup of
contractions in H, Gk is the diffusion kernel associated with the operator k∆. This
semigroup structure allows the process to preserve the spatial characteristics of the
divergence and the vorticities.

The convergence criteria stated in lines 5 and 6 are checked subsequently. If both cri-
teria are satisfied then the required approximation is met and the algorithm terminates.
If condition in line 6 is not satisfied, then we enter the inner iterations and run through
steps 9 to 11, where the Lagrange multiplier λ1 is updated while the penalty parameter
µC is not modified.

The outer iteration steps 13 to 16 are executed when the convergence criteria for-
mulated in line 5 fail. In this case, the optical flow constraint is first updated. Then,
to preserve the convergence and to ensure no occurrence of spurious updates happens,
the Lagrange multiplier is assigned the value from the previous iteration. The tuning
parameter is updated with a higher penalty to ensure that the iterates remain within
bounds.

4.4. Convergence of the Uzawa Iterates

So far we have discussed how the modified augmented Lagrangian formulation is em-
ployed to show the equiavlence of the two saddle point problems using the techniques of
the Bounded Constraint Algorithm. The discussion is complete only when we prove the
convergence of the Uzawa iterates (24). Using the Bounded Constraint Algorithm and
the decoupling principle we show the following.

Lemma 4.2. The Uzawa iterates can be shown to satisfy the bounds

∥λ(n+1)
1 − λ(0)1 ∥H ≤ 2M1∥f∥L∞∥d(0)∥H + r

where

r = max

{
π2

6
mCM, 2δHS

}
.

Proof. Set n = i in Equation (24)

λ
(i+1)
1 − λ(i)1 = 2fd(i) + ρ(i)(Bu(i) − c) , 1 ≤ i ≤ n .

Adding the n equations we obtain

λ
(n+1)
1 − λ(0)1 = 2f [d(n) + · · ·+ d(0)] + ρ(n)(Bu(n) − c) + · · ·+ ρ(0)(Bu(0) − c)

= 2f [S(t)nd(0) + · · ·+ d(0)] + ρ(n)(Bu(n) − c) + · · ·+ ρ(0)(Bu(0) − c) .

Therefore,

λ
(n+1)
1 − λ(0)1 = 2f

[ n∑
i=0

S(t)i
]
d(0) +

n∑
i=0

ρ(i)(Bu(i) − c) .
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Hence,

∥λ(n+1)
1 − λ(0)1 ∥H ≤ 2∥f∥L∞

∣∣∣∣∣[
n∑

i=0

S(t)i
]
d(0)

∣∣∣∣∣+
n∑

i=0

|ρ(i)|∥Bu(i) − c∥H . (27)

Let us first consider the second sum in (27). Following the algorithm we note that

∥Bu(n) − c∥H ≤ Cϵ
(n)
1 . Since the tolerance limit ϵ

(n)
1 is tightened after every update,

there exists a N such that for n > N we can choose aM > 0 such that ϵ
(n)
1 ≤M/(n+1)2

as long as ϵ
(n)
1 > 2δHS. Thus

∥Bu(n) − c∥H ≤ C
M

(n+ 1)2
.

Also as step 10 of the algorithm suggests the tuning parameter ρ(n+1) is assigned the
value of the previous iteration ρ(n). This value is fixed as long as the steps 9-11 run. Let
us denote this fixed value by m. Combining these discussions we obtain

n∑
i=0

|ρ(i)|∥Bu(i) − c∥H ≤ mCM
n∑

i=0

1

(i+ 1)2
,

which remains finite as n becomes large. Now suppose it takes n iterations where ϵ
(n)
1 >

2δHS. From the (n + 1)th iteration when ϵ
(n+j)
1 < 2δHS, j = 1, 2, . . . the upper bound

becomes 2δHS. Combining we have

n∑
i=0

|ρ(i)|∥Bu(i) − c∥H ≤ r ,

where

r = max

{
π2

6
mCM, 2δHS

}
.

which remains finite as n → ∞. Since S(t) is a contraction we observe that as n → ∞
the series of operators in the first term of (27) converges to (I − S(t))−1 which is a
bounded operator. Thus we have ∥(I − S(t))−1d(0)∥ ≤M1∥d(0)∥. Hence, in the limiting
case, we have

∥λ(n+1)
1 − λ(0)1 ∥H ≤ 2M1∥f∥L∞∥d(0)∥H + r

which is finite. The shows the convergence of the multipliers λ
(n)
1 .
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Fig. 1. Oseen vortex pair.

5. Experiments and Results

A direct implementation of the single-phase continuity equation-based refinement re-
quires a very large value of the regularization parameter along with a HS initialization
for accelarating convergence and a pyramidal grid for a stable scheme. In this section,
we show the results of our two-phase method compared to the continuity equation based
method on different datasets.

5.1. Experiments on PIV Dataset

We first tested our algorithm on the oseen vortex pair (see Figure (1)) and compared
our results with the continuity equation model. The Oseen vortex pair is a synthetic
PIV sequence of dimension 500× 500. The vorticies are placed centered at the positions
(166.7, 250) and (333.3, 250). The circumferential velocity is given by vθ = (Γ/2πr)[1−
exp(−r2/r20)] with the vortex strength Γ = ±7000 pixels2/s and vortex core radius r0 =
15 pixels. For more details see [14].

Figure (2) indicates that the vorticity plot obtained through our constraint-based
refinement algorithm is very close to the continuity equation based model (CEC).

Performing a similar analysis as in [19] we plot the distribution of the x-component
of the velocity to obtain Figure (3). This plot compares the distribution of the x-
component of the velocity extracted from the grid images for the HS model, CEC model
and our constraint-based refinement model. The profiling clearly shows the closeness of
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(a) CEC with L2 regularization. (b) Our approach with L2 regularizer.

Fig. 2. Vorticity plot for the Oseen vortex pair.

Fig. 3. Distribution of the x-component of the velocity extracted from the grid images for the Oseen
vortex pair.
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our algorithm to the continuity equation based model. From the figure, it is also seen
how the Horn and Schunck model underestimates the flow components, especially near
the vortex cores.

For a better quantitative evaluation of our flow two-phase method, we consider ad-
ditional PIV analytic flows [8]. We show the results for the Poiseuille and Lamb-Oseen
sequences, see [9] for the description of these datasets.

Figures 4 and 5 show the vorticity plot for the Poiseuille and the Lamb-Oseen se-
quences comparing both the methods with the ground-truth flow. Further, we report
the End Point Error (EPE) for some of the PIV analytic flows in Table 2. The EPE is
computed as

EPE = |ue − uc| =
√
(ue1 − uc1)2 + (ue2 − uc2)2 ,

where ue = (ue1, u
e
2) is the exact optical flow, uc = (uc1, u

c
2) is the computed optical

flow. From the table, it is conclusive that our two-phase method outperforms the CEC
method.

5.2. Experiments on Cloud Sequence

In this sequence, the movement of the fluid exhibits both formation of a vortex as well
as a movement of fluid parcels. The distribution of the strength of the vortices in the
cloud sequence obeys a Gaussian distribution of mean 0 and standard deviation of 3000
(pixels)2/s.

Figure 6 shows the cloud sequence. The comparison of the velocity magnitude plots
are shown below: As seen from Figure 7 the isotropic behaviour of the regularization is
seen more on the continuity equation based implementation because of the denseness of
the flow. Also by increasing the number of iterations we have observed that the effect of
diffusion makes the vortices completely circular. The distribution of the x-component
of the velocity for the cloud sequence is shown in Figure 8. The Horn and Schunck
estimator tends to over estimate at the peaks.

Tab. 2. Comparison of the Average Angular Error (AAE) and End Point Error (EPE) for some PIV
analytic flows.

Algorithm
Poiseuille Lamb-Oseen Sink Vortex Potential flow

EPE EPE EPE EPE EPE

CEC with L2 regularization 0.181 0.847 0.031 0.265 1.260

Our Two-phase Refinement 0.106 0.841 0.029 0.261 1.226
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(a) Ground-truth flow. (b) CEC with L2.

(c) Our two-phase refinement.

Fig. 4. Vorticity plot for the Poiseuille sequence.
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(a) Ground-truth flow. (b) CEC with L2.

(c) Our two-phase refinement.

Fig. 5. Vorticity plot for the Lamb-Oseen sequence.
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Fig. 6. Cloud sequence

(a) CEC with L2 regularization. (b) Our approach with L2 regularizer.

Fig. 7. Vorticity plot for the cloud sequence.
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Fig. 8. Comparison between the distributions of the x-component of the velocity extracted from the
grid images for the cloud sequence.

Fig. 9. Jupiter’s white oval sequence.

5.3. Experiments on Jupiter’s White Oval Sequence

Figure 9 shows Jupiter’s white oval sequence. The white ovals seen in the images are
distinct storms on Jupiter’s atmosphere captured by NASA’s Galileo spacecraft at a
time-lapse of one hour, see [14].
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(a) CEC + L2 with illumination correction. (b) Our approach with illumination correction.

Fig. 10. Vorticity plot of the Jupiter’s white oval sequence.

Effect of Illumination Changes on Optical Flow

Due to the time difference between adjacent frames, it was observed that the sun’s
illumination influenced the subsequent frame considerably in a non-uniform way. To
compensate for the illumination effects, it is necessary to account for the illumination
variation before applying the optical flow method. In Liu’s implementation, an illu-
mination correction is employed by normalizing the intensities and performing a local
intensity correction using Gaussian filters. The first plot in Figure 10 shows the results
of their implementation of the CEC model.

The following comparison demonstrates the effect of illumination changes on the
optical flow computation. As seen from Figure 11 there is a large deviation near the
vortex region when illumination correction is not taken into account. The deviation
is minimized to a great extent as can be seen from the second image. The reason for
our results (even with illumination correction) not being very close to the illumination-
corrected CEC-based flow is because of the direct dependency of the process on the
image data.

5.4. Demonstration of the Flow-driven Refinement Process

Rather than correcting the illumination changes by modifying the scheme we choose a
flow-driven refinement process (ϕ(f) = 1) and perform a diffusion on the curl component.
In order to achieve this, we consider the fourth case from Table (1), ϕ(f) = 1 and
ψ = (∇H · u)2 where ∇H = (−∂y, ∂x) is the Hamiltonian gradient. Introducing the
symplectic gradient switches the roles of divergence and curl in the Equation (8) and the
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(a) Our approach without illumination correction. (b) Our approach with illumination correction.

Fig. 11. Effect of the illumination correction on the distribution of the x-component of the velocity for
Jupiter’s white oval sequence.

Fig. 12. Plots of the Jupiter’s white oval sequence with ϕ(f) = 1, ψ(u) = (∇H · u)2 and without
illumination correction.

analysis follows in the same lines. As mentioned earlier this particular choice captures
the rotational aspects of the flow much better.

Figure 12 gives the velocity magnitude plot obtained by our constraint-based refine-
ment process ϕ(f) = 1 and ψ(u) = (∇H ·u)2 of Jupiter’s white oval sequence along with
the distribution of the x-component of the velocity. The ovals are clearly captured by
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our algorithm. From the distribution of the velocity plot, it is also clear that the flow-
driven refinement process involving the curl outperforms the CEC-based flows without
the additional assumption of illumination correction on the image data.

5.5. Choice of Parameters

In the Liu-Shen implementation of CEC based model, the Lagrange multiplier in the
HS-estimator is chosen to be 20 and in the Liu-Shen estimator, it is fixed at 2000. They
observed that for a refined velocity field it does not significantly affect the velocity profile
in a range of 1000-20,000 except the peak velocity near the vortex cores in this flow. For
the image sequences, the best result was obtained for the values α = 100 and β = 0.01.
It was also observed experimentally that the numerical scheme converges when the ratio
β/α is less than or equal to 10−4.

6. Conclusion

We have proposed a general framework for fluid motion estimation using a constraint-
based refinement approach. We observed a surprising connection to the Cauchy-Riemann
operator that diagonalizes the system leading to a diffusive phenomenon involving the
divergence and the curl of the flow. For a particular choice of the additional constraint,
we showed that our model closely approximates the continuity equation based model
by a modified augmented Lagrangian approach. Additionally, we demonstrated that a
flow-driven refinement process involving the curl of the flow outperforms the classical
physics-based optical flow method without any additional assumptions on the image
data.
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