PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electrospun niobium oxide 1D nanostructures and their applications in textile industry wastewater treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile industry emits daily huge amounts of sewage rich in non-biodegradable organic compounds, especially in textile dyes. Such contaminants are highly soluble in water, which makes their removal difficult. Other studies suggest their carcinogenicity, toxicity and mutagenicity. A promising chemical treatment of textile wastewater is the photodegradation of dye molecules in the process of photocatalysis in the presence of a photocatalyst. One-dimensional nanostructures exhibit a high surface-to-volume ratio and a quantum confinement effect, making them ideal candidates for nanophotocatalyst material. Nb2O5 is, among other metal oxides with a wide band gap, gaining popularity in optical applications, and electrospun niobium oxide nanostructures, despite their ease and low cost, can increase the chemical removal of textile dyes from wastewater. Facile synthesis of electrospun one-dimensional niobium oxide nanofibers is presented. The nanophotocatalysts morphology, structure, chemical bonds and optical properties were examined. Based on photodegradation of aqueous solutions (ph=6) of methylene blue and rhodamine B, the photocatalytic activity was established. The photocatalytic efficiency after 180 minutes of ultraviolet irradiation in the presence of Nb2O5 nanofibers was as follows: 84.9% and 31.8% for methylene blue and rhodamine B decolorization, respectively.
Rocznik
Strony
art. no. e144941
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • [1] M.A.U. Olea, J. de J.P. Bueno, and A.X.M. Pérez, “Nanometric and surface properties of semiconductors correlated to photocatalysis and photoelectrocatalysis applied to organic pollutants – A review,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106480, Dec. 2021, doi: 10.1016/J.JECE.2021.106480.
  • [2] A.H. Zyoud et al., “Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2 nanoparticles: Catalytic efficiency assessment for future prospects,” J. Environ. Chem. Eng., vol. 8, no. 4, p. 104038, Aug. 2020, doi: 10.1016/J.JECE.2020.104038.
  • [3] T.L.T. Le, T.H.T. Le, K. Nguyen Van, H. Van Bui, T.G. Le, and V. Vo, “Controlled growth of TiO2 nanoparticles on graphene by hydrothermal method for visible-light photocatalysis,” J. Sci. Adv. Mater. Devices, vol. 6, no. 4, pp. 516–527, Dec. 2021, doi: 10. 1016/J.JSAMD.2021.07.003.
  • [4] A. Manohar et al., “Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines,” J. Alloys Compd., vol. 874, p. 159868, Sep. 2021, doi: 10.1016/J.JALLCOM.2021.159868.
  • [5] X. Guo, C. Chen, W. Song, X. Wang, W. Di, and W. Qin, “CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis,” J. Mol. Catal. A Chem., vol. 387, pp. 1–6, Jun. 2014, doi: 10.1016/J.MOLCATA.2014.02.020.
  • [6] Y. Liu, S. Shen, J. Zhang, W. Zhong, and X. Huang, “Cu2-xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity,” Appl. Surf. Sci., vol. 478, pp. 762–769, Jun. 2019, doi: 10.1016/J.APSUSC.2019.02.010.
  • [7] Y. Long, Y. Wang, D. Zhang, P. Ju, and Y. Sun, “Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria,” J. Colloid Interface Sci., vol. 481, pp. 47–56, Nov. 2016, doi: 10.1016/J.JCIS.2016.07.041.
  • [8] M. Arumugam et al., “Solvent-mediated synthesis of BiOI with a tunable surface structure for effective visible light active photocatalytic removal of Cr(VI) from wastewater,” Environ. Res., vol. 197, p. 111080, Jun. 2021, doi: 10.1016/J.ENVRES.2021.111080.
  • [9] B. Hu and Y. Liu, “Nitrogen-doped Nb2O5 nanobelt quasi-arrays for visible light photocatalysis,” J. Alloys Compd., vol. 635, pp. 1–4, Jun. 2015, doi: 10.1016/J.JALLCOM.2015.02.109.
  • [10] X. Cui, Z. Yang, X. Zhang, W. Liu, B. Zou, and W. Liao, “Fabrication of novel heterojunction of (1D) Nb2O5 nanorod/(0D) CdS nanoparticles for efficient removal of U(VI) from water,” Appl. Surf. Sci., vol. 599, p. 154027, Oct. 2022, doi: 10.1016/J.APSUSC.2022.154027.
  • [11] A.K. Kulkarni et al., “In situ preparation of N doped orthorhombic Nb2O5 nanoplates /rGO composites for photocatalytic hydrogen generation under sunlight,” Int. J. Hydrogen Energy, vol. 43, no. 43, pp. 19873–19884, Oct. 2018, doi: 10.1016/J.IJHYDENE.2018.09.013.
  • [12] C. Zhou et al., “Spatial separation of charge carriers in Nb2O5 nanorod superstructures for enhanced photocatalytic H2 production activity,” Mater. Today Chem., vol. 10, pp. 259–263, Dec. 2018, doi: 10.1016/J.MTCHEM.2018.09.005.
  • [13] C.L. Ücker et al., “Influence of Nb2O5 crystal structure on photocatalytic efficiency,” Chem. Phys. Lett., vol. 764, p. 138271, Feb. 2021, doi: 10.1016/J.CPLETT.2020.138271.
  • [14] C.L. Ücker et al., “Facile preparation of Nb2O5/TiO2 heterostructures for photocatalytic application,” Chem. Phys. Impact, vol. 4, p. 100079, Jun. 2022, doi: 10.1016/J.CHPHI.2022.100079.
  • [15] C.L. Ücker et al., “Photocatalytic degradation of rhodamine B using Nb2O5 synthesized with different niobium precursors: Factorial design of experiments,” Ceram. Int., vol. 47, no. 14, pp. 20570–20578, Jul. 2021, doi: 10.1016/J.CERAMINT.2021.04.066.
  • [16] H.M. Wadullah, M. Talib Mohammed, and T. Khalid Abdulrazzaq, “Structure and characteristics of Nb2O5 nanocoating thin film for biomedical applications,” Mater. Today Proc., vol. 62, pp. 3076–3080, Jan. 2022, doi: 10.1016/J.MATPR.2022.03.229.
  • [17] P. Zhang et al., “Facile synthesis and characterization of low crystalline Nb2O5 ultrafine nanoparticles as a new efficient photocatalyst,” J. Non. Cryst. Solids, vol. 500, pp. 371–376, Nov. 2018, doi: 10.1016/J.JNONCRYSOL.2018.08.026.
  • [18] G. Taques Tractz, F. Staciaki da Luz, S. Regina Masetto Antunes, E. do Prado Banczek, M. Taras da Cunha, and P. Rogério Pinto Rodrigues, “Nb2O5 synthesis and characterization by Pechini method to the application as electron transport material in a solar device,” Sol. Energy, vol. 216, pp. 1–6, Mar. 2021, doi: 10.1016/ J.SOLENER.2021.01.029.
  • [19] P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, S.R. Kim, and M.A. Morris, “Preparation and morphology of niobium oxide fibres by electrospinning,” Chem. Phys. Lett., vol. 374, no. 1–2, pp. 79–84, Jun. 2003, doi: 10.1016/S0009-2614(03)00702-4.
  • [20] M.V. Reddy, R. Jose, A. Le Viet, K.I. Ozoemena, B.V.R. Chowdari, and S. Ramakrishna, “Studies on the lithium ion diffusion coefficients of electrospun Nb2O5 nanostructures using galvanostatic intermittent titration and electrochemical impedance spectroscopy,” Electrochim. Acta, vol. 128, pp. 198–202, May 2014, doi: 10.1016/J.ELECTACTA.2013.10.003.
  • [21] J.Y. Cheong et al., “Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics,” J. Power Sources, vol. 360, pp. 434–442, Aug. 2017, doi: 10.1016/J.JPOWSOUR.2017.06.030.
  • [22] P. Du et al., “TiO2/Nb2O5 core–sheath nanofibers film: Coelectrospinning fabrication and its application in dye-sensitized solar cells,” Electrochem. commun., vol. 25, no. 1, pp. 46–49, Nov. 2012, doi: 10.1016/J.ELECOM.2012.09.013.
  • [23] L. Wang, Y. Li, and P. Han, “Electrospinning preparation of g-C3N4/Nb2O5 nanofibers heterojunction for enhanced photocatalytic degradation of organic pollutants in water,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–12, Nov. 2021, doi: 10.1038/s41598-021-02161-x.
  • [24] L. Wang, Y. Li, P. Han, and Y. Jiang, “Facile fabrication of Fedoped Nb2O5 nanofibers by an electrospinning process and their application in photocatalysis,” RSC Adv., vol. 11, no. 1, pp. 462–469, Dec. 2020, doi: 10.1039/D0RA10042K.
  • [25] N.C. Hildebrandt, J. Soldat, and R. Marschall, “Layered Perovskite Nanofibers via Electrospinning for Overall Water Splitting,” Small, vol. 11, no. 17, pp. 2051–2057, May 2015, doi: 10. 1002/SMLL.201402679.
  • [26] E.T. de Jesus et al., “Potential of Nb2O5 nanofibers in photocatalytic degradation of organic pollutants,” Environ. Sci. Pollut. Res., vol. 28, no. 48, pp. 69401–69415, Dec. 2021, doi: 10.1007/S11356-021-15435-8/FIGURES/10.
  • [27] A. Radoń et al., “Catalytic activity of non-spherical shaped magnetite nanoparticles in degradation of Sudan I, Rhodamine B and Methylene Blue dyes,” Appl. Surf. Sci., vol. 487, pp. 1018–1025, Sep. 2019, doi: 10.1016/J.APSUSC.2019.05.091.
  • [28] R.C. Carvalho, M.E.V. Mendonça, M.S. Tavares, E. Moreira, and D.L. Azevedo, “Optoelectronic and thermodynamic properties, infrared and Raman spectra of NbO2 and Nb2O5 from DFT formalism,” J. Phys. Chem. Solids, vol. 163, p. 110549, Apr. 2022, doi: 10.1016/J.JPCS.2021.110549.
  • [29] M. Ristić, S. Popović, and S. Musić, “Sol–gel synthesis and characterization of Nb2O5 powders,” Mater. Lett., vol. 58, no. 21, pp. 2658–2663, Aug. 2004, doi: 10.1016/J.MATLET.2004.03.041.
  • [30] D. Cao,W. Cai,W. Tao, S. Zhang, D.Wang, and D. Huang, “Lactic Acid Production from Glucose Over a Novel Nb2O5 Nanorod Catalyst,” Catal. Letters, vol. 147, no. 4, pp. 926–933, Apr. 2017, doi: 10.1007/S10562-017-1988-6.
  • [31] H.T. Kreissl et al., “Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity,” J. Am. Chem. Soc., vol. 139, no. 36, pp. 12670–12680, Sep. 2017, doi: 10.1021/JACS.7B06856.
  • [32] L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, and D. Long, “Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2 @carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors,” Sci. Reports 2016 61, vol. 6, no. 1, pp. 1–10, Feb. 2016, doi: 10.1038/srep21177.
  • [33] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, Oct. 2015, doi: 10.1515/PAC-2014-1117.
  • [34] L. Lou et al., “Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries,” Sci. China Mater. 2018 624, vol. 62, no. 4, pp. 465–473, Sep. 2018, doi: 10.1007/S40843-018-9338-6.
  • [35] G. Li et al., “Ethanol sensing properties and reduced sensor resistance using porous Nb2O5–TiO2 n-n junction nanofibers,” Sensors Actuators B Chem., vol. 283, pp. 602–612, Mar. 2019, doi: 10.1016/J.SNB.2018.12.074.
  • [36] S. Qi, R. Zuo, Y. Liu, and Y.Wang, “Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers,” Mater. Res. Bull., vol. 48, no. 3, pp. 1213–1217, Mar. 2013, doi: 10.1016/J.MATERRESBULL.2012.11.074.
  • [37] W. Li, R. Gao, M. Chen, S. Zhou, and L. Wu, “Facile synthesis and unique photocatalytic property of niobium pentoxide hollow spheres and the high optoelectronic performance of their nanofilm,” J. Colloid Interface Sci., vol. 411, pp. 220–229, Dec. 2013, doi: 10.1016/J.JCIS.2013.08.022.
  • [38] Y. Zhao et al., “Shape-Dependent Acidity and Photocatalytic Activity of Nb2O5 Nanocrystals with an Active TT (001) Surface,” Angew. Chemie, vol. 124, no. 16, pp. 3912–3915, Apr. 2012, doi: 10.1002/ANGE.201108580.
  • [39] C. Daza Gómez and J. Enrique Rodríguez-Páez, “The effect of the synthesis conditions on structure and photocatalytic activity of Nb2O5 nanostructures,” Process. Appl. Ceram., vol. 12, pp. 218–229, 2018, doi: 10.2298/PAC1803218G.
  • [40] G. Falk et al., “Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films,” doi: 10.1557/jmr.2017.93.
  • [41] N.P. Ferraz et al., “CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water,” Rare Met., vol. 39, no. 3, pp. 230–240, Mar. 2020, doi: 10.1007/S12598-019-01282-7.
  • [42] M.K. Silva, R.G. Marques, N.R. C.F. Machado, and O.A.A. Santos, “Evaluation of Nb2O5 and Ag/Nb2O5 in the photocatalytic degradation of dyes from textile industries,” Brazilian J. Chem. Eng., vol. 19, no. 4, pp. 359–363, 2002, doi: 10.1590/S0104-66322002000400001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d23eadf-e1a1-4df5-bf86-9621fcf85c50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.