Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Spacer fabrics are 3D technical textiles, consisting of two parallel textile layers, which are connected by a series of monofils. In many industrial applications, such as the deployment as a distance holder, the compression properties of spacer fabrics play a crucial role. The article experimentally investigates the potential of influencing these compression properties by the incorporation of parallel seams into the fabric. Moreover, an efficient simulation-based finite-element approach is presented, that allows the a-priori estimation of effective compression resistance. For this purpose, a dimension reduction approach is employed, that reduces the arising highly complex multi-contact problems to simulations on the yarn and monofil centerlines. Input for the simulation are known mechanical properties of the yarns and the general lapping plan of the spacer fabric. The proposed model is applicable to the linear compression regime, i.e., before buckling and large bending arises. As a proof-of-concept, the compression experiment for a plane, circular punch on the spacer fabric with and without added seams is simulated and afterwards validated by experiments. The good agreement of the attained compression curves demonstrates the applicability of the numerical approach.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
70--76
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Fraunhofer ITWM, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
autor
- Fraunhofer ITWM, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
autor
- Institute of textile Machinery and High Performance Material Technology, D-01062 Dresden, Germany
Bibliografia
- 1. Helbig FU. Druckelastische 3D-Gewirke: Gestaltungsmerkmale und mechanische Eigenschaften druckelastischer Abstandsgewirke. Saarbrücken: Südwestdeutscher Verlag für Hochschulschriften. 2011.
- 2. Chen F, Wang J, Gao, S, Ning, X, Yan P, Tian M. An experimental study on the vibration behavior and the physical properties of weft-knitted spacer fabrics manufactured using flat knitting technology. Text Res J. 2022;004051752211249. Available from: https://doi.org/10.1177/00405175221124929
- 3. Yu S, Liu H, Wu S, Ma P. Numerical characterizations for compres-sive behaviors of warp-knitted spacer fabrics with multi-layers from simplified finite element model. J. Ind. Text. 2022;52:1-22. Available from: https://doi.org/10.1177/15280837221112402
- 4. Yu L et al. Finite element simulation and experimental verification of quasi-static compression properties for 3D spacer fabric/hollow mi-crospheres reinforced three phase composites. Mater Res Express. 2021;8(5): 55305. Available from: https://stats.iop.org /article/ 10.1088/2053-1591/ac0265.
- 5. Hou X, Hu H, Liu Y, Silberschmidt V. Nonlinear Compression Behav-ior of Warp-Knitted Spacer Fabric: Effect of Sandwich Structure. Comput. Mater. Contin. 2011;23(2):119–134. Available from: https://doi.org/10.3970/cmc.2011.023.119
- 6. Datta MK, Behera BK, Goyal A. Prediction and analysis of compres-sion behaviour of warp-knitted spacer fabric with cylindrical surface. J. Ind. Text. 2019;48(9):1489–1504. Available from: https://doi.org/10.1177/1528083718769936
- 7. Liu Y, Hu H. Finite element analysis of compression behaviour of 3D spacer fabric structure. Int. J. Mech. Sci. 2015;94-95:244–259. Available from: https://doi.org/10.1016/j.ijmecsci.2015.02.020
- 8. Liu H, Jiang G, Dong Z. Lapping modeling of looped warp knitted Available from: https://doi.org/10.1177/1558925020979300
- 9. Liu Y, Hu H. Compression property and air permeability of weft‐knitted spacer fabrics. J. Text. Inst. 2011;102(4):366–372. Available from: https://doi.org/10.1080/00405001003771200
- 10. Liu Y, Hu H, Zhao L, Long H. Compression behavior of warp-knitted spacer fabrics for cushioning applications. Text Res J. 2012;82(1):11-20. Available from: https://doi.org/10.1177/00405 17511416
- 11. Liu Y, Hu H. An experimental study of compression behavior of warp-knitted spacer fabric. JEFF. 2014;9(2). Available from: https://doi.org/10.1177/155892501400900207
- 12. Vassiliadis S, Kallivretaki A, Psilla N, Provatidis Ch, Mecit D, Roye A. Numerical Modelling of the Compressional Behaviour of Warp-knitted Spacer Fabrics. Fibres Text. East. Eur. 2009;76(5):56–61. Available from:https://www.openarchives.gr/aggregator-openarchives/edm/ntua /000011-123456789_28784
- 13. Griso G, Khilkova L, Orlik J. Asymptotic Behavior of Unstable Struc-tures Made of Beams. J Elast. 2022;150:7–76. Available from: https://doi.org/10.1007/s10659-022-09892-6
- 14. Orlik J, Krier, M, Neusius D, Pietsch K, Sivak O, Steiner K. Recent efforts in modeling and simulation of textiles. Textiles. 2021;1(2):322-336. Available from: https://doi.org/10.3390/textiles1020016.
- 15. Orlik J, Pietsch K, Fassbender A, Sivak O, Steiner K. Simulation and Experimental Validation of Spacer Fabrics Based on their Structure and Yarn’s Properties. Appl. Compos Mater. 2018;25:709-724. Avail-able from: https://doi.org/10.1007/s10443-018-9726-9.
- 16. TexMath Software Tool for Simulation of Textiles. itwm.fraunhofer.de/TexMath (accesses on 28.06.2023).
- 17. Orlik J, Neusius D, Steiner K., Krier M. On the ultimate strength of heterogeneous slender structures based on multi-scale stress de-composition. Int. J. Eng. Sci. 2024;195: 104010. Available from: https://doi.org/10.1016/j.ijengsci.2023.104010.
- 18. Yu S, Dong M, Jiang G, Ma P. Compressive characteristics of warp-knitted spacer fabrics with multi-layers. Compos Struct. 2021;256:113016. Available from: https://doi.org/10.1016/j.comp struct.2020.113016
- 19. Schwager C, Peiner C, Bettermann I, Gries T. Development and standardization of testing equipment and methods for spacer fabrics. Appl. Compos. Mater. Mater. 2022;29(1):325-341. Available from: https://doi.org/10.1007/s10443-021-09959-y
- 20. Yu A, Sukigara S, Takeuchi S. Effect of inlaid elastic yarns and inlay pattern on physical properties and compression behaviour of weft-knitted spacer fabric. J Ind Text. 2022;51(2):2688S-2708S. Available from: https://doi.org/10.1177/1528083720947740
- 21. Orlik J, Panasenko G, Shiryaev V. Optimization of textile-like materi-als via homogenization and beam approximations. Model Simul. 2016;14(2): 637-667. Available from: https://doi.org/10.1137/15M1017193
- 22. Shiryaev V, Orlik J. A one‐dimensional computational model for hyperelastic string structures with Coulomb friction. Math. Methods Appl. Sci. 2017;40(3):741-756. Available from: https://doi.org/10.1002/mma.4005
- 23. Bare DZ, Orlik, J., Panasenko, G. Asymptotic dimension reduction of a Robin-type elasticity boundary value problem in thin beams. Appl Anal.2014;93(6):1217-1238. Available from: https://doi.org/10.1080/00036811.2013.823481
- 24. Bare Z, Orlik J, Panasenko G. Non homogeneous Dirichlet conditions for an elastic beam: an asymptotic analysis. Appl Anal. 2016;95(12):2625-2636. Available from: https://doi.org/10.1080/00036811.2015.1105960
- 25. Orlik J, Andrä H, Argatov I, Staub S. Does the weaving and knitting pattern of a fabric determine its relaxation time. QJMAM. 2017;70(4):337-361. Available from: https://doi.org/10.1093/ qjmam/hbx011
- 26. Griso G, Orlik J, Wackerle S. Asymptotic behavior for textiles. SIAM. 2020;52(2):1639-1689. Available from: https://doi.org/10.1137/ 19M1288693
- 27. Orlik J, Falconi R, Griso G, Wackerle S. Asymptotic behavior for textiles with loose contact.
- 28. Math. Methods Appl. Sci. 2023;46(16):17082-17127. Available from: https://doi.org/10.1002/mma.9490
- 29. Orlik J, Zhurov A, Middleton J. On the secondary stability of coated cementless hip replacement: parameters that affected interface strength. Med Eng Phys. 2003;25(10):825-831. Available from: https://doi.org/10.1016/S1350-4533(03)00099-7
- 30. Andrä H, Battiato S, Bilotta G, Farinella GM, Impoco G, Orlik J., Russo G, Zemitis A. Structural simulation of a bone-prosthesis sys-tem of the knee joint. Sensors. 2008; 8(9):5897-5926. DOI: 10.3390/s8095897. Available from: https://doi.org/10.3390/s8095897
- 31. Orlik J, Zhurov A. Homogenization for contact problems with known microroughness of the contacting surfaces. J. mech. behav. mater. 2009;19(2-3):143-150. Available from: https://doi.org/10.1515/JMBM.2009.19.2-3.143
- 32. Argatov II, Borodich FM, Popov VL. JKR adhesive contact for a transversely isotropic layer of finite thickness. J Phys D. 2015;49(4):045307. DOI 10.1088/0022-3727/49/4/045307. Available from:https://orca.cardiff.ac.uk/id/eprint/90101
- 33. Argatov I, Mishuris G. Contact mechanics of articular cartilage layers. Asymptotic models. Springer (Cham Heidelberg New York Dordrecht -8433.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d2266a1-9c21-4db9-9e98-1443bee91a1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.