Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomaterials for hip implants – important considerations relating to the choice of materials

Warianty tytułu
Języki publikacji
This article is a review of important material requirements for hip biomaterials including their response to the body environment (biocompatibility), mechanical properties, wear resistance, fretting corrosion and availability as well as the price. The application of proper biomaterials for hip implants is one of the major focal points in this article. Background information is also provided on metals used in other prosthetic devices and implant components. Titanium and its alloys, cobalt base alloys and stainless steels (bio-steels) are used for load-bearing hip implants. These three groups of metallic materials will be introduced and discussed in detail. Metals and their alloys are crystalline materials since their properties depend on the crystal lattice, chemical and phase compositions, grain size, lattice defects, crystalline texture and residual microand macro-stresses. All these features of biomaterials are formed during technological manufacturing, such as metallurgical process, solidification, plastic deformation (rolling and forging), machining, heat treatment and coating. All these technological processes work in optimal conditions in order to achieve the optimal microstructure and mechanical, chemical and biological properties. Amongst the above-mentioned particular properties of biomaterials, fretting is a major concern as regards hip implants at the femoral head and neck taper interface. Additional important mechanisms of interaction between the implant and the human body must be taken into account, i.e. diffusion stream of foreign particles and atoms from the implant to body fluids, to the tissue and to the bone. These foreign particles and atoms are released from the implant to the body fluid, to the tissue and to the bone as wear product during use. All together they contribute to the wear, i.e. loss of weight, strength or volume of hip components. Wear rates of ultrahigh molecular weight polyethylene mated against Ti-6Al-4V are significantly greater than the ones for Co-Cr-Mo alloys. Therefore, thermochemical surface treatments like diffusion ion nitriding should be applied to increase the resistance of titanium alloys to wear. Austenitic stainless steels are also used for temporary applications, but they have lower resistance to pitting corrosion than titanium and cobalt alloys. The purpose of the paper is to introduce a group of metallic materials, which is often chosen for surgical hip implants. Conclusions of the paper refer to information which support important medical and patient decisions on hip implants. Also, the development of biomaterials, their treatments, properties, surface layers and coatings are considered. All these features develop over time and need synergy and experience in the progress of the biomedical, mechanical and materials science.
Opis fizyczny
Bibliogr. 36 poz., rys.
  • Research and Development at Scientific Metal Treatment, Roselle, USA; and AGH-University of Science and Technology, Krakow, Poland
  • Medical University of Silesia, Katowice, Poland
  • AGH-University of Science and Technology, Krakow, Poland
  • 1. Niinomi M. Recent titanium R&D for biomedical applications in Japan. Jovi Optimo Maximo 1999;51:32–4.
  • 2. Wong J, Bronzino J. Biomaterials. Boca Raton, FL: CRC Press, 2007.
  • 3. Zhou YL, Niinomi M, Akahori T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Mater Sci Eng A 2004;371:283–90.
  • 4. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 1998;243:231–6.
  • 5. Davidson JA, Kovacs P. New biocompatible, low modulus titanium alloy for medical implants. U.S. Patent, No.5, 169, 597, December 8, 1992.
  • 6. Gebeau RC, Brown RS. Tech spotlight: biomedical implant alloys. Adv Mater Proc 2001;159:46–8.
  • 7. Brunski B. Metals. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. San Diego, CA: Academic Press, 1996:37–50.
  • 8. Devine TM, Wulff J. Cast vs. wrought cobalt chromium surgical implant alloys. J Biomed Mater Res 1975;9:151–67.
  • 9. Marciniak J. Biomaterialy: Wyd. Polit. Śląskiej, Gliwice, 2002.
  • 10. Błażewicz S, Stoch L. Biomateriały t.4 w Biocybernetyka i inżynieria biomedyczna 2000 pod red. M. Nalęcza, Akademicka Oficyna Wyd. EXI, Warsaw, 2003.
  • 11. Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science prospective. Biomaterials 1998;19:1621–39.
  • 12. Grosse S, Haugland HK, Lilleng P, Elison P, Hallan G, Hel PJ. Wear particles and ion from cemented and uncemented titaniumbased hip protheses – a histological and chemical analysis. J Biomed Mater Res B Appl Biomater 2015;103B:709–17.
  • 13. Okazaki Y, Rao S, Tateishi T, Ito Y. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater Sci Eng A 1998;243:250.
  • 14. Cobalt base alloys. In: Davis JR, editor. ASM specialty handbook: nickel, cobalt, and their alloys. OH: ASM International, 2000: 362–70. ISBN: 978-0-87170-685-0.
  • 15. Williams DF. The properties and clinical uses of cobalt chromium alloys. In: Williams DF, Williams EF, editors. Biocompatibility of clinical implant materials, vol 1, Boca Raton USA: CRS Press, 1981:99–127.
  • 16. Kuhm AT. Corrosion of Co-Cr alloys in aqueous environments – a review. Biomaterials 1981;2:68–77.
  • 17. Kilner T, Pilliar RM, Weatherly GC, Allibert C. Phase identification and incipient melting in cast Co–Cr surgical implant alloy J Biomed Mater Res 1982;16:63–79.
  • 18. Sobiecki JR, Wierzchoń T, Rudnicki J. The influence of glow discharge nitriding, oxynitriding and carbonitriding on surface modification of Ti–1Al–1Mn titanium alloy. Vacuum 2001;64:41–6.
  • 19. Jurczyk K. Badanie wybranych właściwości chemicznych, mechanicznych i biokompatabilości nanokompozytów typu tytan-ceramika w warunkach in vitro, PhD thesis, Poznan University of Medical Science, Poznan, 2010, promoter Prof. J. Stopa.
  • 20. Le Parisien, BFM TV, France info (Tygodnik ANGORKA, Warszawa-Chicago Nr 17 (1077) Rok XXI 26 kwietnia 2015.
  • 21. Boyer R. Titanium and titanium alloys. In: Davis JR, editor. Metals handbook, desk edition, 2nd ed. OH: ASM International, ISBN: 978-0-87170-654-6, 1998:575–88.
  • 22. Long M, Rack HJ. Total joint replacement – a materials science perspective. Biomaterials 1998;19:1621–39.
  • 23. Kocańda S. Zmęczeniowe niszczenie metali, Warszawa, WNT 1978.
  • 24. Mishra AK, Davidson JA, Kovacs P, Poggie RA. Ti-13Nb-13Zr: a new low modulus, high strength, corrosion resistant near-beta alloy for orthopaedic implants. In: Eylon D, Boyer RR, Koss DA, editors. Beta titanium alloys in the 1990s. Warrendale, PA: The Mineral, Metals and Materials Society, 1993:61–72.
  • 25. Dąbrowski R. Effect of heat treatment on the mechanical properties of two-phase titanium alloy Ti6Al7Nb. Arch Metal Mater 2014;59:1713–6.
  • 26. Dąbrowski R, Krawczyk J, Rożniata E. Influence of the ageing temperature on the selected mechanical properties of the Ti6Al7Nb alloy. Key Eng Mater 2015;641:120–3.
  • 27. Choroszyński M, Choroszyński MR, Skrzypek StJ. Diffusional nitrided surface layers of some titanium components of hip implants (in preparation for publication in Biomaterials 2017).
  • 28. Massalski TB. Binary alloys phase diagrams, 7th ed., vol 1–3, 1990, OH: ASM International, ISBN: 0-87170-405-6.
  • 29. Bochniak W, Przybyłowicz K. Defekty w sieci krystalicznej i ich rola, oraz K. Kubiak: Tytan i jego stopy, Rozdz., w: Inżynieria metali iich stopów/red. Stanisław J. Skrzypek, Karol Przybyłowicz. Kraków: Wydawnictwa AGH, 2012.
  • 30. Skrzypek SJ. Nowe możliwości pomiaru makro-naprężeń własnych w materiałach przy zastosowaniu dyfrakcji promieniowania X w geometrii stałego kąta padania, ROZPRAWY i MONOGRAFIE 108, Uczelniane Wyd. Nauk.-Dydaktyczne AGH, Kraków 2002.
  • 31. Knychalska-Karwan Z, Ślósarczyk A. Hydroxyapatyt w stomatologii, Druk. TECHNET, Kraków, 1994.
  • 32. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng 1998;243:244–9.
  • 33. Niinomi M. Development of β type titanium alloys for biomedical applications. Mater Jap 1998;37:843–6.
  • 34. Dąbrowski R. The phase transformations during continuous cooling of Ti6Al7Nb alloy from the two-phase α + β range. J Achiev Mater Manuf Eng 2013;59:7–12.
  • 35. Castleman LS, Motzkin SM. The biocompatibility of nitinol. In: Williams DF, editor. Biocompatibility of clinical implant materials, vol 1. Boca Raton USA: CRC Press, 1981:129–54.
  • 36. Goryczka T, Van Humbeeck J. NiTICu shape memory alloy produced by powder technology. J Alloys Comp 2008;456: 194–200.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.