Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Palygorskite was applied in complexation-ultrafiltration treatment of heavy metals in wastewater under different pH and ionic strength. The results indicated that the rejection of heavy metals increased significantly with pH value, and decreased slightly with an increase of ionic strength of Na+ and Cl-. A certain concentration of NaCl significantly reduced the rejection rate of Cu2+. The rejection of Cu2+, Zn2+ and Cd2+ could reach over 86.8%, 93.6% and 93.7% at pH of 7 and 0.1 mol/L NaCl. The rejection of heavy metals was severely affected by low molecular weight competing complexing agents and the effect of sodium tartrate was greater than triethanolamine. In the presence of sodium tartrate, the rejection of Cu2+, Zn2+ and Cd2+ could arrive over 81.4%, 57.6% and 60.5% at pH of 7 in 20 min. Palygorskite was offered a potential complexing agent for the removal of heavy metals in wastewater at the complexation-ultrafiltration process.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr., wz.
Twórcy
autor
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070
autor
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
autor
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
autor
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
- Gansu Hanxing Environmental Protection Co. Ltd., Lanzhou 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070
Bibliografia
- 1. Zeng, J.X., Ye, H.Q., Huang, N.D., Liu, J.F. & Zheng, L.F. (2009). Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process. Chemosphere 76(5), 706–710 . DOI: 10.1016/j.chemosphere.2009.05.019.
- 2. Chew, C.M., Aroua, M.K. & Hussain, M. A. (2018). Advanced process control for ultrafiltration membrane water treatment system. J. Cleaner Prod. 179, 63–80. DOI: 10.1016/j.jclepro. 2018.01.075.
- 3. Baharuddin, N.H., Sulaima n, N.M.N. & Aroua, M.K. (2015). Removal of zinc and lead ions by polymer-enhanced ultrafiltration using unmodified starch as novel binding polymer. Internat. J. Environ. Science Technol. 12(6), 1825–1834. DOI: 10.1007/s13762-014-0549-4.
- 4. Desai , K.R. & Murthy, Z.V.P. (2014). Removal of Ag(I) and Cr(VI) by Complexation-Ultrafiltration and Characterization of the Membrane by CFSK Model. Separ. Sci. Technol. 49(17), 2620–2629. DOI: 10.1080/01496395.2012.690486.
- 5. Abbasi-Garrava nd, E. & Mulligan, C.N. (2014). Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water. Separ. Purific. Technol. 132(34), 505–512. DOI: 10.1016/j.seppur.2014.06.010.
- 6. Zhou, S., Xue, A., Zhao, Y., Wang, Q.W., Chen, Y ., Li, M.S. & Xing, W.H. (2011). Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite. Desalination 270(1), 269–274. DOI: 10.1016/j.desal.2010.11.055.
- 7. Qiu, Y.R., Mao, L.J. & Wang, W.H. (2014). Removal of manganese from waste water by complexation–ultrafiltration using copolymer of maleic acid and acrylic acid. Transactions of Nonferrous Metals Society of China, 24(4), 1196–1201. DOI: 10.1016/S1003-6326(14)63179-4.
- 8. Huang, Y., Wu, D., Wang, X., Huang, W., L awless, D. & Feng, X.S. (2016). Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafi ltration and flocculation. Separ. Purifi c. Technol. 158(6), 124–136. DOI: 10.1016/j.seppur.2015.12.008.
- 9. Malamis, S., Katsou, E., Kosanovic, T. & Haralambous , K.J. (2012). Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater. Separ. Sci. Technol. 47(7), 983–996. DOI: 10.1080/01496395.2011.645983.
- 10. Chavan, M. (2015). Mathematical modelling for removal of mixture of heavy metal ions from waste-water using micellar enhanced ultrafiltration (MEUF) process. Separ. Sci. Technol. 50(3), 365–372. DOI: 10.1080/01496395.2014.973515.
- 11. Fenelon, V.C., Miyoshi, J.H., Mangolim, C.S., Noce, A.S., Koga, L.N. & Matioliet, G. (2018). Different strategies for cyclodextrin production: Ultrafiltration systems, CGTase immobilization and use of a complexing agent. Carbohyd. Polym. 192, 19–27. DOI: 10.1016/j.carbpol.2018.03.035.
- 12. Khosa, M.A. , Shah, S.S. & Feng, X. (2014). Thermo-dynamic functions of metal–sericin complexation in ultrafiltration study. J. Membrane Sci. 470(23), 1–8. DOI: 10.1016/j.memsci.2014.06.056.
- 13. Zhou, S., Xue, A., Zhang, Y., Li, M.S., Li, K., Zhao, Y.J. & Xing, W.H. (2015). Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+, and reactive dyes. Appl. Clay Sci. 107, 220–229. DOI: 10.1016/j.clay.2015.01.032.
- 14. Khalid, M., Usman, M., Siddiq, M., Rasool, N., Saif, M.J., Imran, M. & Rana, U. A. (2015). Removal of Ni(II) from aqueous solution by using micellar enhanced ultrafiltration. Water Sci. Technol. A: J. Internat. Associ. Water Pollut. Res. 72(6), 946–951. DOI: 10.2166/wst.2015.216.
- 15. Chavan, M. (2015). Mathematical modelling for removal of mixture of heavy metal ions from waste-water using micellar enhanced ultrafiltration (MEUF) process. Separ. Sci. Technol. 50(3), 365–372. DOI: 10.1080/01496395.2014.973515.
- 16. Jana, S., Saikia, A., Purka it, M.K. & Mohantya, K. (2011). Chitosan based ceramic ultrafiltration membrane: Preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem. Engin. J. 170(1), 209–219. DOI: 10.1016/j.cej. 2011.03.056.
- 17. Karat e, V.D. & Marathe, K.V. (2008). Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J. Hazard. Mater. 157(2), 464–471. DOI: 10.1016/j.jhazmat.2008.01.013.
- 18. Korus, I. & Loska, K. (2009). Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration. Desalination 247(1–3), 390–395. DOI: 10.1016/j.desal. 2008.12.036.
- 19. Khosa, M.A. , Shah, S.S. & Feng, X. (2014). Metal sericin complexation and ultrafiltration of heavy metals from aqueous solution. Chem. Engin. J. 244(10), 446–456. DOI: 10.1016/j.cej. 2014.01.091.
- 20. Jawor, A. & Hoek, E.M. (2010). Removing cadmium ions from water via nanoparticle-enhanced ultrafiltration. Environ. Sci. Technol. 44(7), 2570–2576. DOI: 10.1021/es902310e.
- 21. Feng, Y., Wang, Y., Wang, Y., Liu, S.C., Jiang, J.L. , Cao, C.G. & Yao, J.F. (2017). Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. J. Colloid Interf. Sci. 502, 52–58. DOI: 10.1016/j.jcis.2017.04.086.
- 22. Liu, Y., Xu, J.X., Wang, W.B. & Wang, A.Q. (2014). Effects of sodium salts organic acids modification on the microstructure and dispersion behavior of palygorskite nano-powder via high-pressure homogenization process. J. Disper. Sci.Technol. 35(6), 840–847. DOI: 10.1080/01932691.2013.818547.
- 23. Wang, W. & Wang, A. (2010). Nanocomposite of car-boxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties. Carbohyd. Polym. 82(1), 83–91. DOI: 10.1016/j.carbpol.2010.04.026.
- 24. Zhou, S., Xue, A., Zhao, Y., Wang, Q.W., Chen, Y. , Li, M.S. & Xing, W.H. (2011). Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite. Desalination 270(1), 269–274. DOI: 10.1016/j.desal.2010.11.055.
- 25. Lam, B., Déon, S., Morin-Crini, N., Crini, G. & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Cleaner Prod. 171, 927–933. DOI: 10.1007/s10311-018-00818-0.
- 26. Niu, Y.N., Yuan, Y., Gao, W.X. , Qian, S. & Sun, W. (2018). Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite. IOP Conference Series: Mater. Sci. Engin. 322(4), 2021–2027. DOI: 10.1088/1757-899X/322/4/042021.
- 27. Cañizares, P., Pérez, A., Camar illo, R. & Mazarrob, R. (2008). Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process. J. Membrane Sci. 320(1–2), 520–527. DOI: 10.1016/j.memsci.2008.04.043.
- 28. Chakraborty, S., Dasgupta, J., Farooq, U., Sikder, J., Drioli, E. & Curcio, E. (2014). Experimental analysis, modeling and optimization of chromium(VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. J. Miembrane Sc. 456(c), 139–154. DOI: 10.1016/j.memsci.2014.01.016.
- 29. Yu, J.H., Chou, Y.H., Liang, Y.M. & Li, C.W. (2015). Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery. Water Sci. Technol. 72(7), 1096–101. DOI: 10.2166/wst.2015.315.
- 30. El-Sonbati, A.Z., Diab, M.A., El-Bindary, A.A., Eldesok y, A.M. & Morgan, Sh.M. (2015). Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes. Spectrochim. Acta Part A: Molec. Biomol. Spectrosc. 135, 774–791. DOI: 10.1016/j.saa.2014.07.055.
- 31. Huang, J., Lei, P., Zeng, G., Li, X., Zhao, Y., Liu, L X., Li, F. & Chai, Q. (2014). Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Separ. Purifi c. Technol.125(14), 83–89. DOI: 10.1016/j.seppur.2014.01.020.
- 32. Zamariotto, D., Lakard, B., Fieve t, P. & Fatin-Rouge N. (2010). Retention of Cu(II)-and Ni(II)-polyaminocarbo-xylate complexes by ultrafiltration assisted with polyamines. Desalination 258(1), 87–92. DOI: 10.1016/j.desal.2010.03.040.
- 33. Mbareck, C., Nguyen, Q.T., Alaou i, O.T. & Barillier, D. (2009). Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater. 171(1), 93–101. DOI: 10.1016/j.jhazmat. 2009.05.123.
- 34. Goh, P.S., Ng, B.C., Lau, W.J. & I smail, A.F. (2015). Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment. Separ. Purific. Rev. 44(3), 216–249. DOI: 10.1080/15422119.2014.926274.
- 35. Huang, J.H., Zeng, G.M., Zhou, C.F., Li, X ., Shi, L.J. & He, S.B. (2010). Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. J. Hazard. Mater. 183(1–3), 287–293. DOI: 10.1016/j.jhazmat.2010.07.022.
- 36. Sekulić, Z., Antanasijević, D., Stevanović, S. & Trivunac, K. (2019). The prediction of heavy metal permeate flux in complexation-microfiltration process: polynomial neural network approach. Water Air Soil Pollution 230(1), 23–45. DOI: 10.1007/s11270-018-4072-y.
- 37. Yeh, H.M., (2013), Mass transfer in cross-flow parallelplate dialyzer with internal recycle for improved performance. Membrane Water Treatment. 4(4), 251–263. DOI: 10.1080/00986445. 2011.560517.
- 38. Wan, P., Zhang, Z. & Deng, B. (2019 ). Photocatalytic polysulfone hollow fiber membrane with self-cleaning and antifouling property for water treatment. Industrial Engin.Chem. Res. 58(8), 3339–3348. DOI: 10.1021/acs.iecr.8b05783.
- 39. Ho, C.D., Sung, Y.J., Chen, W.T. & Tsai, F.C. (2017 ). Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor. Membrane Water Treatment 8(1), 35–50. DOI: 10.12989/mwt.2017.8.1.035.
Uwagi
This research was supported by the National Natural Science Foundation of China (No.5166803).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d19b650-f25a-417c-86ce-9338d3eb0f49