PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of long-term performance of foam glass as an insulating sub-base in varying humidity and temperature conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena długoterminowych właściwości użytkowych szkła piankowego jako podłoża izolacyjnego w zróżnicowanych warunkach wilgotnościowych i temperaturowych
Języki publikacji
EN
Abstrakty
EN
The research focuses on the properties of foam glass, popular insulation material used in various industries and applications, including construction, chemistry and defence, after several years of use under varying load, thermal and humidity conditions. The material used as an insulating sub-base underneath industrial steel tank, which had failed with a threat of leakage of the stored high-temperature medium (200ºC), was tested. After macroscopic and material evaluation of the foam glass samples, their compressive strength, water absorption, and behaviour under complex conditions including loading, high temperature, and moisture were examined experimentally. Absorption of water considerably affects reducing the foam glass performance. Investigations show that the foam glass generally does not reach the declared compressive strength. If this surface is additionally heated to high temperature, the foam glass undergoes destruction by chipping or crushing just at stresses several times lower than the limits for this material, and even with no applied load. The test results show that foam glass exposed to simultaneous action of water and high temperature undergoes progressive deterioration, resulting in a decrease in declared parameters and losing its usability. Therefore, effective and durable protection from water is of critical importance to ensure reliability of foam glass exposed to high temperatures.
PL
W artykule przedstawiono ocenę właściwości szkła piankowego, popularnego materiału izolacyjnego stosowanego w różnych gałęziach przemysłu, m.in. w budownictwie, chemii i obronności, po kilku latach użytkowania w zmiennych warunkach obciążenia, temperatury i oddziaływania wody. Badaniom poddano materiał zastosowany jako podłoże izolacyjne pod stalowym zbiornikiem przemysłowym, który uległ awarii grożącej wyciekiem magazynowanego medium o temperaturze 200ºC. Po dokonaniu oceny makroskopowej i materiałowej próbek szkła piankowego, zbadano jego wytrzymałość na ściskanie, absorpcję wody oraz zachowanie się w złożonych warunkach obciążeniowych, termicznych i wilgotnościowych. Wyniki badań wykazały, że szkło piankowe poddane jednoczesnemu działaniu wody i podwyższonej temperatury ulega stopniowej degradacji, co skutkuje obniżeniem deklarowanych parametrów technicznych i utratą przydatności użytkowej. Oznacza to, że zapewnienie niezawodności szkła piankowego eksploatowanego w warunkach wysokich temperatur wymaga bezwzględnie skutecznego i trwałego zabezpieczenia tego materiału przed działaniem wody. Brak takiej ochrony może doprowadzić do poważnych i trudnych do usunięcia uszkodzeń nie tylko samego szkła piankowego, ale również konstrukcji, do izolacji której szkło piankowe zostało zastosowane.
Rocznik
Strony
155--175
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • [1] E. Bernardo, R. Castellan, S. Hreglich, I. Lancellotti, “Sintered sanidine glass-ceramics from industrial wastes”, Journal of the European Ceramic Society, 2006, vol. 26, no. 15, pp. 3335-3341, DOI: 10.1016/j.jeurceramsoc.2005.09.110.
  • [2] A.M. Papadopoulos, “State of the art in thermal insulation materials and aims for future developments”, Energy and Buildings, 2005, vol. 37, no. 1, pp. 77-86, DOI: 10.1016/j.enbuild.2004.05.006.
  • [3] E. Bernardo, F. Albertini, “Glass foams from dismantled cathode ray tubes”, Ceramics International, 2006, vol. 32, pp. 603-608, DOI: 10.1016/j.ceramint.2005.04.019.
  • [4] J. König, R.R. Petersen, Y. Yue, “Fabrication of highly insulating foam glass made from CRT panel glass”, Ceramics International, 2015, vol. 41, no. 8, pp. 9793-9800, DOI: 10.1016/j.ceramint.2015.04.051.
  • [5] B. Chen, K. Wang, X. Chen, A. Lu, “Study of foam glass with high content of fly ash using calcium carbonate as foaming agent”, Materials Letters, 2012, vol. 79, pp. 263-265, DOI: 10.1016/j.matlet.2012.04.052.
  • [6] E. Ercenk, “The effect of clay on foaming and mechanical properties of glass foam insulating material”, Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 137-146, DOI: 10.1007/s10973-016-5582-8.
  • [7] H.W. Guo, X.F. Wang, Y.X. Gong, X.N. Liu, D.N. Gao, “Improved mechanical property of foam glass composites toughened by glass fiber”, Materials Letters, 2010, vol. 64, pp. 2725-2727, DOI: 10.1016/j.matlet.2010.09.012.
  • [8] O.V. Kaz’Mina, V.I. Vereshchagin, B.S. Semukhin, “Structure and strength of foam-glass-crystalline materials produced from a glass granulate”, Glass Physics and Chemistry, 2011, vol. 37, pp. 371-377, DOI: 10.1134/S1087659611040092.
  • [9] F. Méar, P. Yot, R. Viennois, M. Ribes, “Mechanical behaviour and thermal and electrical properties of foam glass”, Ceramics International, 2007, vol. 33, no. 4, pp. 543-550, DOI: 10.1016/j.ceramint.2005.11.002.
  • [10] E. Bernardo, G. Scarinci, P. Bertuzzi, P. Ercole, L. Ramon, “Recycling of waste glasses into partially crystallized glass foams”, Journal of Porous Materials, 2010, vol. 17, pp. 359-365, DOI: 10.1007/s10934-009-9286-3.
  • [11] P. Colombo, G. Brusatin, E. Bernardo, G. Scarinci, “Inertization and reuse of waste materials by vitrification and fabrication of glass-based products”, Current Opinion in Solid State & Materials Science, 2003, vol. 7, no. 3, pp. 225-239, DOI: 10.1016/j.cossms.2003.08.002.
  • [12] A.S. Llaudis, M.J.O. Tari, F.J.G. Ten, E. Bernardo, P. Colombo, “Foaming of flat glass cullet using Si3N4 and MnO2 powders”, Ceramics International, 2009, vol. 35, pp. 1953-1959, DOI: 10.1016/j.ceramint.2008.10.022.
  • [13] Y.N. Qu, J. Xu, Z.G. Su, N. Ma, X.Y. Zhang, X.Q. Xi, J.L. Yang, “Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique”, Ceramics International, 2016, vol. 42, pp. 2370-2377, DOI: 10.1016/j.ceramint.2015.10.034.
  • [14] C. Zhai, Y. Zhong, Z. Li, X. Wang, L. Zhao, L. Pan, J. Zhang, “Preparation and characterization of mechanical properties of foam glass for artificial floating island carrier”, Advances in Mechanical Engineering, 2015, vol. 7, no. 6, pp. 1-6, DOI: 10.1177/1687814015589660.
  • [15] L. Ding, W. Ning, Q. Wang, D. Shi, L. Luo, “Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass”, Materials Letters, 2015, vol. 141, pp. 327-329, DOI: 10.1016/j.matlet.2014.11.122.
  • [16] H. Yin, M. Ma, J. Bai, Y. Li, S. Zhang, F. Wang, “Fabrication of foam glass from iron tailings”, Materials Letters, 2016, vol. 185, pp. 511-513, DOI: 10.1016/j.matlet.2016.09.034.
  • [17] H.W. Guo, Y.X. Gong, S.Y. Gao, “Preparation of high strength foam glass-ceramics from waste cathode ray tube”, Materials Letters, 2010, vol. 64, no. 8, pp. 997-999, DOI: 10.1016/j.matlet.2010.02.006.
  • [18] O.V. Kazmina, B.S. Semukhin, J. Njuguna, “Mechanical performance of foam glass with nanoscale structure elements”, in: IOP Conference Series: Materials Science and Engineering, Bristol. IOP Publishing, 2012, art. ID 012042, DOI: 10.1088/1757-899X/40/1/012042.
  • [19] O.V. Kaz’mina, B.S. Semukhin, A.V. Votinov, V.P. Kaz’min, “Properties of Foam Glass Material Modified by Nanosize Zirconium Dioxide”, Glass and Ceramics, 2016, vol. 73, pp. 39-42, DOI: 10.1007/s10717-016-9821-z.
  • [20] B. Chen, K. Wang, X. Chen, A. Lu, “Study of foam glass with high content of fly ash using calcium carbonate as foaming agent”, Materials Letters, 2012, vol. 79, pp. 263-265, DOI: 10.1016/j.matlet.2012.04.052.
  • [21] B.S. Semukhin, O.V. Kazmina, A.Y. Volkova, V.I. Suslyayev, “Physical characteristics of foam glass modified with zirconium dioxide”, Russian Physics Journal, 2017, vol. 59, pp. 2130-2136, DOI: 10.1007/s11182-017-1024-8.
  • [22] Y.I. Vaisman, A.A. Ketov, P.A. Ketov, “The scientific and technological aspects of foam glass production”, Glass Physics and Chemistry, 2015, vol. 41, pp. 157-162, DOI: 10.1134/S1087659615020133.
  • [23] M. Zhu, R. Ji, Z. Li, H. Wang, L.L. Liu, Z. Zhang, “Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass”, Construction and Building Materials, 2016, vol. 112, pp. 398-405, DOI: 10.1016/j.conbuildmat.2016.02.183.
  • [24] D. Ghosh, A. Wiest, R.D. Conner, “Uniaxial quasistatic and dynamic compressive response of foams made from hollow glass microspheres”, Journal of the European Ceramic Society, 2016, vol. 36, no. 3, pp. 781-789, DOI: 10.1016/j.jeurceramsoc.2015.10.018.
  • [25] EN 13167 Thermal insulation products for buildings - Factory made cellular glass (CG) products - Specification. 2012.
  • [26] J. Li, X. Zhuang, E. Monfort, X. Querol, A.S. Llaudis, O. Font, N. Moreno, F.J.G. Ten, M. Izquierdo, “Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features”, Construction and Building Materials, 2018, vol. 175, pp. 64-76, DOI: 10.1016/j.conbuildmat.2018.04.158.
  • [27] A. Ventrella, F. Smeacetto, M. Salvo, M. Ferraris, “Characterization of newglass coated foam glass insulating tiles by standard tests”, Journal of Materials Engineering and Performance, 2012, vol. 21, pp. 2380-2388, DOI: 10.1007/s11665-012-0164-9.
  • [28] H.R. Fernandes, D.U. Tulyaganov, J.M.F. Ferreira, “Production and characterisation of glass ceramic foams from recycled raw materials”, Advances in Applied Ceramics, 2009, vol. 108, no. 1, pp. 9-13, DOI: 10.1179/174367509X344971.
  • [29] J. König, A. Lopez-Gil, P. Cimavilla-Roman, M.A. Rodriguez-Perez, R.R. Petersen, M.B. Østergaard, N. Iversen, Y. Yue, M. Spreitzer, “Synthesis and properties of open- and closed-porous foamed glass with a low density”, Construction and Building Materials, 2020, vol. 247, art. ID 118574, DOI: 10.1016/j.conbuildmat. 2020.118574.
  • [30] A. Mueller, S.N. Sokolova, V.I. Vereshagin, “Characteristics of lightweight aggregates from primary and recycled raw materials”, Construction and Building Materials, 2008, vol. 22, no. 4, pp. 703-712, DOI: 10.1016/ j.conbuildmat.2007.06.009.
  • [31] K.S. Ivanov, “Preparation and Properties of Foam Glass-ceramic from Diatomite”, Journal of Wuhan University of Technology - Materials Science Edition, 2018, vol. 33, pp. 273-277, DOI: 10.1007/s11595-018-1817-8.
  • [32] EN 826 Thermal insulating products for building applications - Determination of compression behaviour. 2013.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d19b166-475b-4083-bb57-caded4ec9bea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.