PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three models of a sandwich beam: bending, buckling, and free vibrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the analytical modelling of a sandwich beam. Three models of this beam are elaborated. Two nonlinear individual shear theories of deformation of a plane cross-sections are proposed. Based on Hamilton’s principle, two differential equations of motion for each model are obtained. The bending, buckling and free flexural vibration problems of the simply-supported sandwich beam considering these three models are studied. The results of these analytical investigations are presented in tables.
Rocznik
Strony
97--122
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
  • Łukasiewicz Research Network – Poznań Institute of Technology, Rail Vehicles Center Poznan, Poland
  • Poznan University of Technology, Institute of Mathematics Poznan, Poland
  • Poznan University of Technology, Institute of Mathematics Poznan, Poland
Bibliografia
  • 1. Plantema F.J., Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates, and Shells, John Wiley & Sons, Inc., New York, London, Sydney, 1966.
  • 2. Allen H.G., Analysis and Design of Structural Sandwich Panels, Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1969.
  • 3. Noor A.K, Burton W.S., Bert C.W., Computational models for sandwich panels and shells, Applied Mechanics Reviews, 49(3): 155–199, 1996, doi: 10.1115/1.3101923.
  • 4. Frostig Y., Buckling of sandwich panels with a flexible cores – high-order theory, International Journal of Solids and Structures, 35(3–4): 183–204, 1998, doi: 10.1016/S0020- 7683(97)00078-4.
  • 5. Vinson J.R., Sandwich structures, Applied Mechanics Reviews, 54(3): 201–214, 2001, doi: 10.1115/1.3097295.
  • 6. Icardi U., Applications of Zig-Zag theories to sandwich beams, Mechanics of Advanced Materials and Structures, 10(1): 77–97, 2003, doi: 10.1080/15376490306737.
  • 7. Steeves C.A., Fleck N.A., Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part 1: analytical models and minimum weight design, International Journal of Mechanical Sciences, 46(4): 561–583, 2004, doi: 10.1016/j.ijmecsci.2004.04.003.
  • 8. Yang M., Qiao P., Higher-order impact modeling of sandwich structures with flexible core, International Journal of Solids and Structures, 42(20): 5460–5490, 2005, doi: 10.1016/j.ijsolstr.2005.02.037.
  • 9. Magnucka-Blandzi E., Magnucki K., Effective design of a sandwich beam with a metal foam core, Thin-Walled Structures, 45(4): 432–438, 2007, doi: 10.1016/j.tws.2007.03.005.
  • 10. Carrera E., Brischetto S., A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates, Applied Mechanics Reviews, 62(1): 010803, 2009, doi: 10.1115/1.3013824.
  • 11. Kreja I., A literature review on computational models for laminated composite and sandwich panels, Central European Journal of Engineering, 1(1): 59–80, 2011, doi: 10.2478/ s13531-011-0005-x.
  • 12. Magnucka-Blandzi E., Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified Timoshenko hypothesis, Mechanics of Advanced Materials and Structures, 18(2): 147–158, 2011, doi: 10.1080/15376494.2010. 496065.
  • 13. Magnucka-Blandzi E., Mathematical modelling of a rectangular sandwich plate with a metal foam cores, Journal of Theoretical and Applied Mechanics, 49(2): 439–455, 2011.
  • 14. Baba B.O., Free vibration analysis of curved sandwich beams with face/core debond using theory and experiment, Mechanics of Advanced Materials and Structures, 19(5): 350–359, 2012, doi: 10.1080/15376494.2010.528163.
  • 15. Phan C.N., Frostig Y., Kardomateas G.A., Analysis of sandwich beams with a compliant core and with in-plane rigidity–extended high-order sandwich panel theory versus elasticity, ASME: Journal of Applied Mechanics, 79(4): 041001–1-11, 2012, doi: 10.1115/1.40 05550.
  • 16. Magnucki K., Jasion P., Szyc W., Smyczynski M., Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core, Steel and Composite Structures, 16(3): 325–337, 2014, doi: 10.12989/scs.2014.16.3.325.
  • 17. Sayyad A.S., Ghugal Y.M., Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature, Composite Structures, 171: 486–504, 2017, doi: 10.1016/j.compstruct.2017.03.053.
  • 18. Magnucka-Blandzi E., Bending and buckling of a metal seven-layer beam with crosswise corrugated main core – Comparative analysis with sandwich beam, Composite Structures, 183: 35–41, 2018, doi: 10.1016/j.compstruct.2016.11.089.
  • 19. Czechowski L., Jankowski J., Kotełko M., Jankowski M., Experimental and numerical three-point bending test for sandwich beams, Journal of KONES Powertrain and Transport, 24(3): 53–62, 2017, doi: 10.5604/01.3001.0010.3071.
  • 20. Birman V., Kardomateas G.A., Review of current trends in research and applications of sandwich structures, Composites Part B: Engineering, 142: 221–240, 2018, doi: 10.1016/j.compositesb.2018.01.027.
  • 21. Sayyad A.S., Ghugal Y.M., Modeling and analysis of functionally graded sandwich beams: A review, Mechanics of Advanced Materials and Structures, 26(21): 1776–1795, 2019, doi: 10.1080/15376494.2018.1447178.
  • 22. Zhen W., Yang C., Zhang H., Zheng X., Stability of laminated composite and sandwich beams by a Reddy-type higher-order zig-zag theory, Mechanics of Advanced Materials and Structures, 26(19): 1622–1635, 2019, doi: 10.1080/15376494.2018.1444228.
  • 23. Magnucki K., Bending of symmetrically sandwich beams and I-beams – analytical study, International Journal of Mechanical Sciences, 150: 411–419, 2019, doi: 10.1016/j.ijmecsci. 2018.10.020.
  • 24. Magnucki K., Magnucka-Blandzi E., Generalization of a sandwich structure model: Analytical studies of bending and buckling problems of rectangular plates, Composite Structures, 255: 112944, 2021, 112944, doi: 10.1016/j.compstruct.2020.112944.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d139261-6d18-4ec5-ad8a-13580dfa6c34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.