PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of Silica Powder Extracted from Fly Ash of Coal Fired Power Plant – Effect of Heat Treatment Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fly ash waste is a by-product of coal burning at PLTU Nagan Raya, Aceh Province, Indonesia. Since 2017, the coal used is a mixture of 90% Kalimantan coal (sub-bituminous) and 10% local Nagan Raya coal (lignite) which is still young so that the mineral ash content is still high. Silica is among the interesting minerals to be extracted from fly ash, given its wide range of benefits. This paper describes the process of extracting silica from fly ash at the Aceh power plant through the leaching method using a chemical solution and heating for 2 and 4 hours at a temperature of 100˚C. The difference in heat treatment aimed to study the changes in properties and obtain the best method in the silica extraction process. The effect of heat treatment on silica characteristics was studied based on X Ray Diffraction (XRD) test for phase identification, Scanning Electron Microscopy (SEM) test for morphological identification, Energy Dispersive X-Ray Spectroscopy (EDS) test for mineralogy element identification, Fourier Transform Infra-Red (FTIR) test for identification of functional groups and surface chemistry, and differential calorimetric analysis/ thermogravimetric (DSC/TGA) test for identification of thermal properties. As a result, it was found that fly ash still contains unburned carbon, which significantly affects its color, and has the potential for application as a hydrogen storage material because its pore diameter structure is larger than 0.7 nm. The silica extracted from fly ash is capable of achieving a purity of up to 87% and exhibits excellent thermal stability, especially at temperatures between 120–300 °C; thus, it has the potential to be a catalyst material in the adsorption-desorption reaction of hydrogen by magnesium, although further research is still needed.
Słowa kluczowe
Rocznik
Strony
282--292
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Graduate School of Mathematics and Applied Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
  • Department of Mechanical Engineering, Faculty of Engineering, Malikussaleh University, jalan Batam, Bukit Indah, Lhokseumawe 24351, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Malikussaleh University, jalan Batam, Bukit Indah, Lhokseumawe 24351, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
Bibliografia
  • 1. Abu Bakar, A.H., Jia Ni Carey, C. 2020. Extraction of Silica from Rice Straw Using Alkaline Hydrolysis Pretreatment. IOP Conf. Ser. Mater. Sci. Eng., 778. https://doi.org/10.1088/1757-899X/778/1/012158
  • 2. Alterary, S.S., Marei, N.H. 2021. Fly ash properties, characterization, and applications: A review. J. King Saud Univ. - Sci., 33, 101536. https://doi.org/10.1016/j.jksus.2021.101536
  • 3. Anas Boussaa, S., Kheloufi, A., Boutarek Zaourar, N., Bouachma, S. 2017. Iron and aluminium removal from Algerian silica sand by acid leaching. Acta Phys. Pol. A, 132, 1082–1086. https://doi.org/10.12693/APhysPolA.132.1082
  • 4. Bera, B., Das, N. 2019. Synthesis of high surface area mesoporous silica SBA-15 for hydrogen storage application. Int. J. Appl. Ceram. Technol., 16, 294–303. https://doi.org/10.1111/ijac.13082
  • 5. Besari, D.A.A., Anggara, F., Petrus, H.T.B.M., Astuti, W., Husnah, W.A. 2021. Effect of power plant operating conditions on fly ash and bottom ash composition: A case study from power plant in Lampung. IOP Conf. Ser. Earth Environ. Sci., 851. https://doi.org/10.1088/1755-1315/851/1/012039
  • 6. Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., Techapaphawit, S. 2019. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater., 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263
  • 7. Blissett, R. 2015. Coal fly ash and the circular economy, 1–248.
  • 8. Borodina, U., Goryainov, S., Oreshonkov, A., Shatskiy, A., Rashchenko, S. 2020. Raman study of 3.65 Å-phase MgSi(OH)6 under high pressure and the bands assignment. High Pressure Research, 40(4), 495–510. https://doi.org/10.1080/08957959.2020.1830078
  • 9. Das, D., Samal, D.P., BC, M. 2015. Preparation of Activated Carbon from Green Coconut Shell and its Characterization. J. Chem. Eng. Process Technol., 06. https://doi.org/10.4172/2157-7048.1000248
  • 10. Dhaneswara, D., Fatriansyah, J.F., Situmorang, F.W., Haqoh, A.N. 2020. Synthesis of Amorphous Silica from Rice Husk Ash: Comparing HCl and CH3COOH Acidification Methods and Various Alkaline Concentrations. Int. J. Technol., 11, 200–208. https://doi.org/10.14716/ijtech.v11i1.3335
  • 11. Eiamwijit, M., Pachana, K., Kaewpirom, S., Rattanasak, U., Chindaprasirt, P. 2015. Comparative study on morphology of ground sub-bituminus FBC fly ash geopolymeric material. Adv. Powder Technol., 26, 1053–1057. https://doi.org/10.1016/j.apt.2015.04.013
  • 12. Fomenko, E. V., Anshits, N.N., Solovyov, L.A., Knyazev, Y. V., Semenov, S. V., Bayukov, O.A., Anshits, A.G. 2021. Magnetic Fractions of PM2.5, PM2.5-10, and PM10from Coal Fly Ash as Environmental Pollutants. ACS Omega 6, 20076–20085. https://doi.org/10.1021/acsomega.1c03187
  • 13. Foo, C.T., Salleh, M.A.M., Ying, K.K., Matori, K.A. 2019. Mineralogy and thermal expansion study of mullite-based ceramics synthesized from coal fly ash and aluminum dross industrial wastes. Ceram. Int., 45, 7488–7494. https://doi.org/10.1016/j.ceramint.2019.01.041
  • 14. Gruchot, A., Zydroń, T. 2016. Impact of a test method on the undrained shear strength of a chosen fly ash. J. Ecol. Eng., 17, 41–49. https://doi.org/10.12911/22998993/63955
  • 15. Guo, C., Zou, J., Ma, S., Yang, J., Wang, K. 2019. Alumina extraction from coal fly ash via low-temperature potassium bisulfate calcination. Minerals, 9. https://doi.org/10.3390/min9100585
  • 16. Handoko, E., Budi, E., Sugihartono, I., Marpaung, M.A., Jalil, Z., Taufiq, A., Alaydrus, M. 2020. Microwave absorption performance of barium hexaferrite multi-nanolayers, Mater. Express, 10 (8), 1328–1336. DOI: 10.1166/mex.2020.1811
  • 17. Jalil, Z., Rahwanto, A., Malahayati, Mursal, Handoko, E., Akhyar, H. 2018. Hydrogen storage properties of mechanical milled MgH2-nano Ni for solid hydrogen storage material, IOP Conf. Ser.: Mater. Sci. Eng., 432, 012034. DOI: 10.1088/1757-899X/432/1/012034
  • 18. Jeyageetha C.J., Kumar S.P. 2013. Study of SEM/EDXS and FTIR for Fly Ash to Determine the Chemical Changes of Ash in Marine Environment. Int J Sci Res., 5(7), 2319–7064.
  • 19. Juda-Rezler, K., Kowalczyk, D. 2013. Size distribution and trace elements contents of coal fly ash from pulverized boilers. Polish J. Environ. Stud., 22, 25–40.
  • 20. Kim, H.S., Park, N.K., Lee, T.J., Um, M.H., Kang, M. 2012. Preparation of nanosized α - Al2O3 particles using a microwave pretreatment at mild temperature. Adv. Mater. Sci. Eng., 2012. https://doi.org/10.1155/2012/920105
  • 21. Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N., Kyritsi, A., Kasselouri-Rigopoulou, V. 2008. Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater., 115, 189–196. https://doi.org/10.1016/j.micromeso.2007.12.032
  • 22. Khairan, K., Zahraturriaz, Z., Jalil, Z. 2019. Green synthesis of sulphur nanoparticles using aqueous garlic extract (allium sativum). Rasayan Journal of Chemistry, 12(1) 50–57. http://dx.doi.org/10.31788/RJC.2019.1214073
  • 23. Lindvall, M., Berg, M., Sichen, D. 2017. The Efect of Al2O3, CaO and SiO2 on the Phase Relationship in FeO–SiO2 Based Slag with 20 Mass%Vanadium. J. Sustain. Metall., 3, 289–299. https://doi.org/10.1007/s40831-016-0088-y
  • 24. Ma, Z., Gao, J., Weng, X., Yang, S., Peng, K. 2020. Synthesis and mechanism of aluminum silicate mesoporous materials by F108 template. Mater. Sci. Pol., 38, 566–576. https://doi.org/10.2478/msp-2020-0067
  • 25. Mariana, M., Mulana, F., Sofyana, S., Dian, N.P., Lubis, M.R. 2019. Characterization of adsorbent derived from Coconut Husk and Silica (SiO2). IOP Conf. Ser. Mater. Sci. Eng., 523. https://doi.org/10.1088/1757-899X/523/1/012022
  • 26. Mirda, E., Idroes, R., Khairan, K., Tallei, T.E., Ramli, M., Earlia, N., Maulana, A., Idroes, G. M., Muslem, M., Jalil, Z. 2021. Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities, Polymers, 13(22), 3990. https://www.mdpi.com/2073-4360/13/22/3990
  • 27. Mohammed Hello, K., Kadhim Hlial, E. 2019. Modification of silica with sulfuric acid and phosphoric acid for cellulose hydrolysis. J. Phys. Conf. Ser., 1294. https://doi.org/10.1088/1742-6596/1294/5/052013
  • 28. Monfort, E., Mezquita, A., Vaquer, E., Celades, I., Sanfelix, V., Escrig, A. 2014. Ceramic Manufacturing Processes: Energy, Environmental, and Occupational Health Issues, Comprehensive Materials Processing, Elsevier. https://doi.org/10.1016/B978-0-08-096532-1.00809-8
  • 29. Mourdikoudis, S., Pallares, R.M., Thanh, N.T.K. 2018. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871–12934. https://doi.org/10.1039/c8nr02278j
  • 30. Muthusamy, K., Rasid, M.H., Jokhio, G.A., Mokhtar Albshir Budiea, A., Hussin, M.W., Mirza, J. 2020. Coal bottom ash as sand replacement in concrete: A review. Constr. Build. Mater., 236, 117507. https://doi.org/10.1016/j.conbuildmat.2019.117507
  • 31. Petrus, H.T.B.M., Olvianas, M., Suprapta, W., Setiawan, F.A., Prasetya, A., Sutijan, A.F. 2020. Cenospheres Characterization from Indonesian Coal-Fired Power Plant Fly Ash and Their Potential Utilization. Journal of Environmental Chemical Engineering, 8, 104116. https://doi.org/10.1016/j.jece.2020.104116
  • 32. Pieter A., Cozmuta L.M., Cozmuta A.M., Nicula C., Indrea E., Tutu H. 2012. Calcium- and ammonium ion-modification of zeolite amendments affects the metal- uptake of Hieracium piloselloides in a dosedependent way. J Environ Monit.,; 14, 2807e14.
  • 33. Rondón, W., Freire, D., Benzo, Z. de, Sifontes, A.B., González, Y., Valero, M., Brito, J.L. 2013. Application of 3A Zeolite Prepared from Venezuelan Kaolin for Removal of Pb (II) from Wastewater and Its Determination by Flame Atomic Absorption Spectrometry. Am. J. Anal. Chem., 4, 584–593. https://doi.org/10.4236/ajac.2013.410069
  • 34. Sefriani, R., Oktavia, B. 2021. Modification of natural silica using dimethylamine and the application as a phosphate ion absorption. J. Phys. Conf. Ser., 1788. https://doi.org/10.1088/1742-6596/1788/1/012015
  • 35. Song, H., Tang, M., Lei, X., Feng, Z., Cheng, F. 2020. Preparation of ultrafine fly ash-based super- hydrophobic composite coating and its application to foam concrete. Polymers (Basel)., 12. https://doi.org/10.3390/POLYM12102187
  • 36. Strzałkowska, E. 2021. Morphology and chemical composition of mineral matter present in fly ashes of bituminous coal and lignite. Int. J. Environ. Sci. Technol., 18, 2533–2544. https://doi.org/10.1007/s13762-020-03016-0
  • 37. Tripathy, A.K., Behera, B., Aishvarya, V., Sheik, A.R., Dash, B., Sarangi, C.K., Tripathy, B.C., Sanjay, K., Bhattacharya, I.N. 2019. Sodium fluoride assisted acid leaching of coal fly ash for the extraction of alumina. Miner. Eng., 131, 140–145. https://doi.org/10.1016/j.mineng.2018.10.019
  • 38. Vichaphund, S., Aht-Ong, D., Sricharoenchaikul, V., Atong, D. 2014. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste. Environ. Technol. (United Kingdom), 35, 2254–2261. https://doi.org/10.1080/09593330.2014.900118
  • 39. Vielma, T., Lassi, U., Salminen, J. 2018. Precipitation of silica from zinc process solution. Monatshefte fur Chemie, 149, 313–321. https://doi.org/10.1007/s00706-017-2054-1
  • 40. Vilakazi, A.Q., Ndlovu, S., Chipise, L., Shemi, A. 2022. The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustain., 14, 1–32. https://doi.org/10.3390/su14041958
  • 41. Wang, S., Ma, Q., Zhu, Z.H. 2008. Characteristics of coal fly ash and adsorption application. Fuel, 87, 3469–3473. https://doi.org/10.1016/j.fuel.2008.05.022
  • 42. Wang, Z., Dai, S., Zou, J., French, D., Graham, I.T. 2019. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. Int. J. Coal Geol., 203, 1–14. https://doi.org/10.1016/j.coal.2019.01.001
  • 43. Yadav, V.K., Fulekar, M.H. 2020. Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ashwaste. Ceramics, 3, 384–420. https://doi.org/10.3390/ceramics3030034
  • 44. Yan, F., Jiang, J., Li, K., Liu, N., Chen, X., Gao, Y., Tian, S. 2017. Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture. Environ. Sci. Technol., 51, 7606–7615. https://doi.org/10.1021/acs.est.7b00320
  • 45. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q. 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Rev., 141, 105–121. https://doi.org/10.1016/j.earscirev.2014.11.016
  • 46. Yuksel I. Blast-furnace slag. 2018. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd., 361–415. http://dx.doi.org/10.1016/B978-0-08-102156-9.00012-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d12bedb-eb4e-4bb4-930b-4285981611c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.