PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Slag Activity on Corrosion of Ceramic Materials in a Slurry Furnace

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the process of copper production in a slurry furnace and in a converter, with the indication of corrosion effects of the extractor. The furnace shaft and settling furnace of the flash furnace were analyzed. The basic factors determining the choice of single-stage technology of copper smelting in relation to the exploitation of refractory materials were indicated. The effects of dissolving the furnace lining material through slag have been presented. Structural analysis results using a scanning microscope are also included. The kinetics of destruction of ceramic materials under the influence of copper slag were evaluated. It has been shown that detailed analyzes are necessary in order to extend the time of furnace extensibility of furnaces in copper processes. The surface layer of the crucible softens due to saturation with slag reagents and is then washed out and moves in the solid form to the slag. The research in the article indicate not only the possibility of dissolution of the ceramic material in the molten slag, but also possibility of erosive activity of the slag on that material.
Rocznik
Strony
95--100
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab.
Twórcy
  • University of Zielona Gora, Faculty of Mechanical Engineering, Zielona Góra, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Kraków, Poland
autor
  • KGHM Polish Copper inc., Legnica Copper Smelter and Rafinery, Legnica, Poland
Bibliografia
  • [1] KGHM Polish Copper inc. (2008, April), Głogow Copper Smelter. Retrieved May 5, 2001, from http://student.agh.edu.pl/~sitg/wyjazdy/kghm_2006/HMG_2008. pdf.
  • [2] Kucharski, M. (1987). Effect of Thermodynamic and Physical Properties of Flash Smelting Slags on Copper Losses During Slag Cleaning In an Electric Furnace. Archives of Metallurgy. 32(2), 259-262.
  • [3] Czarnecki, J., Śmieszek, Z. & Milczkowski, Z. (2001). The process of fluidized-bed furnace slag-cleaning and Cu Pb Fe alloy converting at Głogów II copper smelter. Rudy i Metale Nieżelazne. 46(5-6), 221-227. (in Polish).
  • [4] Villarroel, D. (1999). Process for refining copper in solid state. Minerals Engineering. 12(4), 405-414.
  • [5] Bydałek, A.W., Bydałek, A., Wołczyński, W. & Biernat, S. (2015). The concept for the process of slag decopperisation in the flash furnace process use the complex reagents. Archives of Metallurgy and Materials. 60(1), 319-322.
  • [6] Gargul, J., Pluciński, S., Warmuz, M. et al. (1994). Technology of blister copper production in a flash furnace at the Głogow copper smelter – achievements and prospects for the development. Rudy i Metale Nieżelazne. 39(11), 322-326. (in Polish).
  • [7] Bydałek, A.W. (2011). Role of carbon In the melting copper processes. Archives of Foundry Engineering. 11(spec.3), 37-42.
  • [8] Elliott J.F. (1976). Phase Relationships in the Pyrometallurgy of Copper. Metallurgical Transactions B. 7b, 17-33.
  • [9] Gregurek, D., Wenzl, C., Kreuzer, A. et al. (2016). Refractory Corrosion Mechanisms in a Novel High Carbon Ferromanganese Production Furnace. Journal of the Minerals, Metals and Materials Society. 68(12), 3029-3039. ISSN: 1047- 4838.
  • [10] Pirowski, Z. (2014). Evaluation of high temperature Physico-chemical Interactions Between the H282 Alloy Melt and Ceramic Material of the Crucible. Archive of Foundry Engineering. 14(4), 83-90.
  • [11] Elsner, M. & Ząbek, E. (1981). Refractory alkaline materials in the copper metallurgy and reasons for their consumption. Materiały ogniotrwałe. 4, 107-113. (in Polish).
  • [12] Zhu, J., Kaneko, T.K., Mu, H. et al. (2012). Effects of Measurement Materials and Oxygen Partial Pressure on Synthetic Coal Slag Viscosity Values, MOLTEN12: ninth international conference on Molten slags, fluxes and salts, Beijing, China, 27–31 May 2012 (pp. 1 – 16). Conference materials, electronic document.
  • [13] Wędrychowicz, M., Kucharski, M. (2013). Viscosity variation of the slag from direct to blister process during its de - coppering. Recycling of non ferrous metals- international conference 6–8 February 2013 (pp. 42) Cracow. (in Polish).
  • [14] Schneider, H., Komarneni, S. (2006). Mullite. (1st edition). Springer Link. John Wiley and Sons. ISBN: 978-0-387-73361-6
  • [15] Schneider, H., Schreuer, J. & Hildmann, B. (2008). Structure and properties of mullite – a review. Journal of the European Ceramic Society. 28(2), 329-344.
  • [16] Anggono, J. (2003). Mullite Ceramics: Its Properties, Structure, and Synthesis. Journal Teknik Mesin. 7(1), 1-10.
  • [17] Klug, F.J. & Prohazka, S. (1987). Alumina – silica chase diagram in the mullite region. Journal American Ceramic Society. 70, 750-759.
  • [18] Walton, M.C. (2013). Refractories 101. Ceramic Industries magazine. 1, 1-5.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d0d5c50-c6a6-4b98-a4a1-f4ae95a673d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.