PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some fixed point results for mappings in G-metric spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove a common fixed point theorem for a pair of self mappings satisfying a generalized contractive type condition in a complete G-metric space. We also deal with other fixed point results for a self mapping in the setting of generalized metric space. Our results generalize some recent results in the literature.
Wydawca
Rocznik
Strony
179--191
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Department of Mathematics, West Bengal State University, Barasat, 24 Pargans (North), West Bengal, Kolkata 700126, India
autor
  • Department of Mathematics, West Bengal State University, Barasat, 24 Pargans (North), West Bengal, Kolkata 700126, India
Bibliografia
  • [1] R. Chugh, T. Kadian, A. Rani, B. E. Rhoades, Property P in G-metric spaces, Fixed Point Theory and Applications, vol. 2010, Article ID 401684, 12 pages, 2010.
  • [2] B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84(4) (1992), 329–336.
  • [3] B. C. Dhage, Generalised metric spaces and topological structure – I, An. Stiint. Univ. "Al. I. Cuza" Iasi Mat. 46(1) (2000), 3–24.
  • [4] S. Gahler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
  • [5] S. Gahler, Zur geometric 2-metrische räume, Rev. Roumaine Math. Pures Appl. 40 (1966), 664–669.
  • [6] L. Gajić, Z. Lozanov-Crvenković, A fixed point result for mappings with contractive iterate at a point in G-metric spaces, Filomat 25(2) (2011), 53–58.
  • [7] K. S. Ha, Y. J. Cho, A. White, Strictly convex and strictly 2-convex 2-normed spaces, Math. Japon. 33(3) (1988), 375–384.
  • [8] S. K. Mohanta, Property P of Ciric operators in G-metric spaces, Internat. J. Math. Sci. Engg. Appl. 5 (2011), 353–367.
  • [9] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289–297.
  • [10] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Applications, vol. 2009, Article ID 917175, 10 pages, 2009.
  • [11] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, vol. 2008, Article ID 189870, 12 pages, 2008.
  • [12] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci., vol. 2009, Article ID 283028, 10 pages, 2009.
  • [13] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, in Proceedings of the International Conference on Fixed Point Theory and Applications, pp. 189–198, Valencia, Spain, July 2004.
  • [14] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph. D. thesis, The University of Newcastle, Callaghan, Australia, 2005.
  • [15] Z. Mustafa, H. Obiedat, A fixed points theorem of Reich in G-metric spaces, CUBO A Mathematical Journal 12(01) (2010), 83–93.
  • [16] Z. Mustafa, F. Awawdeh, W. Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sci. 5(50) (2010), 2463–2472.
  • [17] S. V. R. Naidu, K. P. R. Rao, N. S. Rao, On the concept of balls in a D-metric space, Int. J. Math. Math. Sci. 1 (2005), 133–141.
  • [18] W. Shatanawi, Fixed point theory for contractive mappings satisfying φ-maps in G-metric spaces, Fixed Point Theory and Applications, vol. 2010, Article ID 181650, 9 pages, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d0bbaba-852a-4683-8cfd-c46a44dbdb7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.