PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Force distribution on foot surface allows to understand the human mechanical behavior, providing detailed information for the evaluation of foot alterations. In diagnosis for diseases related to plantar pathologies, there are many devices for plantar pressure mea-surement, and corresponding algorithms for data analyzing, providing medical tools for assisting in treatment, early detection, and the development of preventive strategies. In medicine, use of computational intelligence is increasing, making the diagnostic processes faster and more accurate. Clinical Decision Support Systems (CDSS) can handle large amounts of data to improve decision-making, helping to prevent the deterioration of people's health. Numerous approaches have been applied over the past few decades to solve medical problems such as hepatitis, diabetes, liver disease, pathological gait, and plantar diseases, among others. This paper presents the developments reported in the literature for detecting diseases through plantar pressure data and the corresponding algorithms for its analysis and diagnosis, using different electronic measurements systems. Finally, we present a discussion about the future work required to improve in the field of plantar pressure diagnosis algorithms using different approaches suggested by the authors as potential candidates. In this sense, hybrid systems which include fuzzy concepts are the most promising methodology.
Twórcy
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Av. Cerro Blanco #141, Col. Colinas del Cimatario, Querétaro, México
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Av. Cerro Blanco #141, Col. Colinas del Cimatario, Querétaro, México
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Av. Cerro Blanco #141, Col. Colinas del Cimatario, Querétaro, México
  • Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Av. Cerro Blanco #141, Col. Colinas del Cimatario, Querétaro, México
Bibliografia
  • [1] Katoh Y, Chao EY, Laughman RK, Schneider E, Morrey BF. Biomechanical analysis of foot function during gait and clinical applications. Clin Orthop Relat Res 1983;177:23–33.
  • [2] Aunhathaweesup Y, Leelasantitham A, Kiattisin S. Development of optical sensor device for pedobarograph acquisition. 2014 Int Electr Eng Cong iEECON. 2014. pp. 0–3.
  • [3] Abdul Razak AH, Zayegh A, Begg RK, Wahab Y. Foot plantar pressure measurement system: a review. Sensors (Switzerland) 2012;12(7):9884–912.
  • [4] Rosenbaum D, Becker H-P. Plantar pressure distribution measurements. Technical background and clinical applications. Foot Ankle Surg 1997;3(1):1–14.
  • [5] Dyer PS, Bamberg SJM. Instrumented insole vs. force plate: a comparison of center of plantar pressure. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2011. pp. 6805–9.
  • [6] Racic V, Pavic A, Brownjohn JMW. Modern facilities for experimental measurement of dynamic loads induced by humans: a literature review. Shock Vib 2013;20(1):53–67.
  • [7] Ramirez-Bautista JA, Huerta-Ruelas JA, Chaparro- Cardenas SL, Hernandez-Zavala A. A review in detection and monitoring gait disorders using in-shoe plantar measurement systems. IEEE Rev Biomed Eng 2017;10(c):299–309.
  • [8] Medica S. Sensor Medica web site – Home. Optoelectronic Syst 2018 [Online]. Available: https://www.sensormedica.com/site/es/productos/ sistemas-optoelectronicos [accessed: 29-01-18].
  • [9] Tekscan, Gait Analysis System j Strideway System j Tekscan, Pressure mapping, force measurement & tactile sensors. [Online]. Available: https://www.tekscan.com/products-solutions/systems/ strideway-system [accessed: 29-01-18].
  • [10] Techno Concepts. DYNAFOOT 2; 2015.
  • [11] Shu L, Hua T, Wang Y, Qiao Li Q, Feng DD, Tao X. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inf Technol Biomed 2010;14(3):767–75.
  • [12] Pauk J, Daunoraviciene K, Ihnatouski M, Griskevicius J, Raso JV. Analysis of the plantar pressure distribution in children with foot deformities. Acta Bioeng Biomech 2010;12(1):29–34.
  • [13] Deschamps K, Matricali GA, Roosen P, Desloovere K, Bruyninckx H, Spaepen P, et al. Classification of forefoot plantar pressure distribution in persons with diabetes: a novel perspective for the mechanical management of diabetic foot? PLoS One 2013;8(11).
  • [14] Goulermas JY, Findlow AH, Nester CJ, Howard D, Bowker P. Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data. Biomed Eng IEEE Trans 2005;52(9):1549–62.
  • [15] Abdullah M. Disease diagnosis using soft computing model: a digest. Int J Comput Appl 2014;102(10):43–7.
  • [16] Tan KC, Yu Q, Heng CM, Lee TH. Evolutionary computing for knowledge discovery in medical diagnosis. Artif Intell Med 2003;27(2):129–54.
  • [17] Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 2001;23(1):89–109.
  • [18] Polat K, Güneş S. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital Signal Process 2007;17(4):702–10.
  • [19] Choubey DK, Paul S. GA_MLP NN: a hybrid intelligent system for diabetes disease diagnosis. Int J Intell Syst Appl 2016;8(1):49–59.
  • [20] Giveki D, Salimi H, Bahmanyar G, Khademian Y. Automatic detection of diabetes diagnosis using feature weighted support vector machines based on mutual information and modified cuckoo search; 2012.
  • [21] Atkov OY, Gorokhova SG, Sboev AG, Generozov EV, Muraseyeva EV, Moroshkina SY, et al. Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol 2012;59(2):190–4.
  • [22] Bascil MS, Oztekin H. A study on hepatitis disease diagnosis using probabilistic neural network. J Med Syst 2012;36(3):1603–6.
  • [23] Polat K, Güneş S. A hybrid approach to medical decision support systems: combining feature selection, fuzzy weighted pre-processing and AIRS. Comput Methods Programs Biomed 2007;88(2):164–74.
  • [24] Dogantekin E, Dogantekin A, Avci D. Automatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference system. Expert Syst Appl 2009;36(8):11282–6.
  • [25] Ghanad NK, Ahmadi S. Combination of PSO algorithm and naive Bayesian classification for Parkinson disease diagnosis. Adv Comput Sci Int J 2015;4(4):119–25.
  • [26] Li Z, Chen W, Wang J, Liu J. An automatic recognition system for patients with movement disorders based on wearable sensors. Proc 2014 9th IEEE Conf Int Electron Appl ICIEA. 2014. pp. 1948–53.
  • [27] Hegde N, Bries M, Sazonov E. A comparative review of footwear-based wearable systems. Electronics 2016;5(3):48.
  • [28] Pataky Z, Golay A, Faravel L, Da Silva J, Makoundou V, Peter-Riesch B, et al. The impact of callosities on the magnitude and duration of plantar pressure in patients with diabetes mellitus. Diabetes Metab 2002;28(5):356–61.
  • [29] Bacarin TA, Sacco ICN, Hennig EM. Plantar pressure distribution patterns during gait in diabetic neuropathy patients with a history of foot ulcers. Clinics (Sao Paulo) 2009;64(2):113–20.
  • [30] Lung C-W, Hsiao-Wecksler ET, Burns S, Lin F, Jan Y-K. Quantifying dynamic changes in plantar pressure gradient in diabetics with peripheral neuropathy. Front Bioeng Biotechnol 2016;4(July (4)):543389–454.
  • [31] Ford KR, Manson NA, Evans BJ, Myer GD, Gwin RC, Heidt RS, et al. Comparison of in-shoe foot loading patterns on natural grass and synthetic turf. J Sci Med Sport 2006;9 (6):433–40.
  • [32] Kimmeskamp S, Hennig EM. Heel to toe motion characteristics in Parkinson patients during free walking. Clin Biomech 2001;16(9):806–12.
  • [33] Duckworth T, Boulton AJ, Betts RP, Franks CI, Ward JD. Plantar pressure measurements and the prevention of ulceration in the diabetic foot. J Bone Joint Surg Br 1985;67(1):79–85.
  • [34] Wen J, Ding Q, Yu Z, Sun W, Wang Q, Wei K. Adaptive changes of foot pressure in hallux valgus patients. Gait Posture 2012;36(3):344–9.
  • [35] Madavi MV, Giripunje SD. Design and implementation of wearable device for neuropathic diabetic foot patients. 7th International Conference on Emerging Trends in Engineering & Technology Design. 2015. pp. 23–7.
  • [36] Medilogic. Medilogic insole science; 2016 [Online]. Available: http://www.medilogic.com/en/products-human/ footpressure-measurement/medilogic-insole/ [accessed: 24-11-16].
  • [37] Bennetts CJ, Owings TM, Erdemir A, Botek G, Cavanagh PR. Clustering and classification of regional peak plantar pressures of diabetic feet. J Biomech 2013;46(1):19–25.
  • [38] Pataky Z, Golay A, Bounameaux H, Bobbioni-Harsch E, Assal JP. Relationship between peripheral vascular disease and high plantar pressures in diabetic neuro-ischaemic patients. Diabetes Metab 2003;29(5):489–95.
  • [39] Kwon OY, Mueller MJ. Walking patterns used to reduce forefoot plantar pressures in people with diabetic neuropathies. Phys Ther 2001;81(2):828–35.
  • [40] Mueller MJ, Strube MJ. Generalizability of in-shoe peak pressure measures using the F-scan system. Clin Biomech 1996;11(3):159–64.
  • [41] Veves A, Murray HJ, Young MJ, Boulton AJM. The risk of foot ulceration in diabetic patients with high foot pressure: a propective study. Diabetologia 1992;35:660–3.
  • [42] Bus SA, Haspels R, Busch-Westbroek TE. Evaluation and optimization of therapeutic footwear for neuropathic diabetic foot patients using in-shoe plantar pressure analysis. Diabetes Care 2011;34(7):1595–600.
  • [43] Patry J, Belley R, Côté M, Chateau-Degat M-L. Plantar pressures, plantar forces, and their influence on the pathogenesis of diabetic foot ulcers: a review. J Am Podiatr Med Assoc 2013;103(4):322–32.
  • [44] Barn R, Waaijman R, Nollet F, Woodburn J, Bus SA. Predictors of barefoot plantar pressure during walking in patients with diabetes, peripheral neuropathy and a history of ulceration. PLoS One 2015;10(2):1–12.
  • [45] Pataky Z, Assal JP, Conne P, Vuagnat H, Golay a. Plantar pressure distribution in Type 2 diabetic patients without peripheral neuropathy and peripheral vascular disease. Diabet Med 2005;22(6):762–7.
  • [46] Wafai L, Zayegh A, Begg R, Woulfe J. Asymmetry detection during pathological gait using a plantar pressure sensing system. 2013 7th IEEE GCC Conf Exhib GCC. 2013. pp. 182–7.
  • [47] Veves A, Murray HJ, Young MJ, Boulton AJM. Diabetologia 1992;30:660–3.
  • [48] Zequera ML, Solomonidis SE, Vega F, Rondon LM. Study of the plantar pressure distribution on the sole of the foot of normal and diabetic subjects in the early stages by using a Wydrocell pressure sensor. 25' Annual lntemationai Conference of the IEEE EMBS. 2003. pp. 1874–7.
  • [49] Rai DV, Aggarwal LM. The study of plantar pressure distribution in normal and pathological foot. Pol J Med Phys Eng 2006;12(1):25–34.
  • [50] Cavanagh PR, Rodgers MM, Iiboshi A. Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle 1987;7(5):262–76.
  • [51] Martínez-Nova A, Cuevas-García JC, Pascual-Huerta J, Sánchez-Rodríguez R. BioFoot® in-shoe system: normal values and assessment of the reliability and repeatability. Foot 2007;17(4):190–6.
  • [52] O'Brien DL, Tyndyk M. Effect of arch type and body mass index on plantar pressure distribution during stance phase of gait. Acta Bioeng Biomech 2014;16(2):131–5.
  • [53] Piédica. Plantillas ortopédicas. Pie plano adultos; 2016 [Online]. Available: http://www.piedica.com/blog-dolor-de-pies/ pie-plano-en-adulto [accessed: 03-07-17].
  • [54] Vorlickova L, Korvas P. Evaluation of rehabilitation influence on flat foot in children by plantar pressure analysis. J Hum Sport Exerc 2014;9(1 (special issue)):5–7.
  • [55] Centro de Diagnostico Piédica. Plantillas ortopédicas. Pie cavo; 2016 [Online]. Available: http://www.piedica.com/blog-dolor-de-pies/pie-cavo [accessed: 03-07-17].
  • [56] Koller U, Willegger M, Windhager R, Wanivenhaus A, Trnka HJ, Schuh R. Plantar pressure characteristics in hallux valgus feet. J Orthop Res 2014;32(12):1688–93.
  • [57] Ledoux WR, Hillstrom HJ. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture 2002;15(1):1–9.
  • [58] Queen RM, Mall NA, Nunley JA, Chuckpaiwong B. Differences in plantar loading between flat and normal feet during different athletic tasks. Gait Posture 2009;29(4):582–6.
  • [59] Fernández-Seguín LM, Diaz Mancha JA, Sánchez Rodríguez R, Escamilla Martínez E, Gómez Martín B, Ramos Ortega J. Comparison of plantar pressures and contact area between normal and cavus foot. Gait Posture 2014;39(2):789–92.
  • [60] Burns J, Crosbie J, Hunt A, Ouvrier R. The effect of pes cavus on foot pain and plantar pressure. Clin Biomech 2005;20(9):877–82.
  • [61] Giacomozzi C, Stebbins JA. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance. Gait Posture 2017;53:131–8.
  • [62] Costea M, Sarghie B, Mihai A, Rezus E. Classification of the elderly foot types based on plantar footprints. Procedia Eng 2017;181:36–43.
  • [63] Rouhani H, Crevoisier X, Favre J, Aminian K. Outcome evaluation of ankle osteoarthritis treatments: plantar pressure analysis during relatively long-distance walking. Clin Biomech 2011;26(4):397–404.
  • [64] Zammit GV, Menz HB, Munteanu SE, Landorf KB. Plantar pressure distribution in older people with osteoarthritis of the first metatarsophalangeal joint (hallux limitus/ rigidus). J Orthop Res 2008;26(12):1665–9.
  • [65] Schmiegel A, Rosenbaum D, Schorat A, Hilker A, Gaubitz M. Assessment of foot impairment in rheumatoid arthritis patients by dynamic pedobarography. Gait Posture 2008;27(1):110–4.
  • [66] Rosenbaum D, Becker H. Review article: Plantar pressure distribution measurements. Technical background and clinical applications. Foot Ankle Surg 1997;(3):1–14.
  • [67] Hayafune N, Hayafune Y, Jacob HaC. Pressure and force distribution characteristics under the normal foot during the push-off phase in gait. Foot 1999;9(2):88–92.
  • [68] Abu-faraj ZO, Abdul-Al M. Leg length discrepancy: a study on in-shoe plantar pressure distribution. 8th International Conference on BioMedical Engineering and Informatics (BMEI 2015). 2015. pp. 381–5.
  • [69] Choi S, Cho H, Kang B, Lee DH, Kim MJ, Jang SH. Slip-related changes in plantar pressure distribution, and parameters for early detection of slip events. Ann Rehabil Med 2015;39(6):897–904.
  • [70] Eils E, Nolte S, Tewes M, Thorwesten L, Völker K, Rosenbaum D. Modified pressure distribution patterns in walking following reduction of plantar sensation. J Biomech 2002;35(10):1307–13.
  • [71] Okuno R, Fujimoto S, Akazawa J, Yokoe M, Sakoda S, Akazawa K. Analysis of spatial temporal plantar pressure pattern during gait in Parkinson's disease. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008. pp. 1765–8.
  • [72] Meyring S, Diehl R, Milani T, Hennig E, Berlit P. Dynamic plantar pressure distribution measurements in hemiparetic patients. Clin Biomech 1997;12(1):60–5.
  • [73] Machado ÁS, Bombach GD, Duysens J, Carpes FP. Differences in foot sensitivity and plantar pressure between young adults and elderly. Arch Gerontol Geriatr 2016;63:67–71.
  • [74] Hennig EM, a Staats D, Rosenbaum. Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int 1994;15(1):35–40.
  • [75] Birtane M, Tuna H. The evaluation of plantar pressure distribution in obese and non-obese adults. Clin Biomech 2004;19(10):1055–9.
  • [76] Hills AP, Hennig EM, McDonald M, Bar-Or O. Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. Int J Obes Relat Metab Disord 2001;25(11):1674–9.
  • [77] Abu-Faraj ZO, Faraj YT, Mohtar KH, Rammal MM. Characterization of plantar pressures in visually impaired individuals: a pilot study. Int IEEE/EMBS Conf Neural Eng NER 2013;1549–53.
  • [78] Menz HB, Morris ME. Clinical determinants of plantar forces and pressures during walking in older people. Gait Posture 2006;24(2):229–36.
  • [79] Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comp Surv 1999;31(3):264–323.
  • [80] Zhang B, Qin S, Wang W, Wang D, Xue L. Data stream clustering based on fuzzy C-mean algorithm and entropy theory. Signal Process 2016;126:111–6.
  • [81] Wang J, Huang H, Li X, Ao Y. Application of the fuzzy C-means clustering algorithm in plantar pressure analysis. 28th Chinese Control and Decision Conference (CCDC). 2016. pp. 2089–94.
  • [82] Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. Int Conf Mach Learn 2001;577–84.
  • [83] De Cock A, Willems T, Witvrouw E, Vanrenterghem J, De Clercq D. A functional foot type classification with cluster analysis based on plantar pressure distribution during jogging. Gait Posture 2006;23(3):339–47.
  • [84] Giacomozzi C, Martelli F, Nagel A, Schmiegel A, Rosenbaum D. Cluster analysis to classify gait alterations in rheumatoid arthritis using peak pressure curves. Gait Posture 2009;29(2):220–4.
  • [85] Niemann U, Spiliopoulou M, Szczepanski T, Samland F, Grützner J, Senk D, et al. Comparative clustering of plantar pressure distributions in diabetics with polyneuropathy may be applied to reveal inappropriate biomechanical stress. PLoS One 2016;11(8):1–12.
  • [86] Deschamps K, Matricali GA, Roosen P, Desloovere K, Bruyninckx H, Spaepen P, et al. Classification of forefoot plantar pressure distribution in patients with diabetes: a biomechanical approach based on relative regional impulses and non-hierachical clustering. 24th Congress of the International Society of Biomechanics (ISB 2013); 15th Brazilian Congress of Biomechanics. 2013. pp. 8–9.
  • [87] Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed 2013;11(2):47–58.
  • [88] Keijsers NLW, Stolwijk NM, Louwerens JWK, Duysens J. Classification of forefoot pain based on plantar pressure measurements. Clin Biomech 2013;28(3):350–6.
  • [89] Sazonov ES, Bumpus T, Zeigler S, Marocco S. Classification of plantar pressure and heel acceleration patterns using neural networks. Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, vol. 5; 2005. p. 3007–10.
  • [90] Piecha J. The neural network selection for a medical diagnostic system using an artificial data set. J Comput Inf Technol 2001;123–32.
  • [91] Oh SE, Joo S, Jung HW, Heo HM, Mun JH, Gmbh N. Development of Algorithm for Ground Reaction Force Prediction using Plantar Pressure during a Harvesting Posture; 2015.
  • [92] Bin Joo S, Oh SE, Mun JH. Improving the ground reaction force prediction accuracy using one-axis plantar pressure: expansion of input variable for neural network. J Biomech 2016;49(14):3153–61.
  • [93] Acharya RU, Tan PH, Subramaniam T, Tamura T, Chua KC, Goh SCE, et al. Automated identification of diabetic type 2 subjects with and without neuropathy using wavelet transform on pedobarograph. J Med Syst 2008;32(1):21–9.
  • [94] Bates JHT, Young MP. Applying fuzzy logic to medical decision making in the intensive care unit. Am J Respir Crit Care Med 2003;167(7):948–52.
  • [95] Phuong NH, Kreinovich V. Fuzzy logic and its applications in medicine. Int J Med Inf 2001;62(2–3):165–73.
  • [96] Biswas A, Lemaire ED, Kofman J. Dynamic gait stability index based on plantar pressures and fuzzy logic. J Biomech 2008;41(7):1574–81.
  • [97] Xu S, Zhou X, Sun Y-N. A novel gait analysis system based on adaptive neuro-fuzzy inference system. Expert Syst Appl 2010;37(2):1265–9.
  • [98] Liang S, Ning Y, Li H, Wang L, Mei Z, Ma Y, et al. Feature selection and predictors of falls with foot force sensors using KNN-based algorithms. Sensor 2015;15:29393–407.
  • [99] Waldecker U. Pedographic classification and ulcer detection in the diabetic foot. Foot Ankle Surg 2012;18(1):42–9.
  • [100] Jeon H-S, Han J, Yi W-J, Jeon B, Park KS. Classification of Parkinson gait and normal gait using spatial-temporal image of plantar pressure. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf, vol. 2008. 2008. pp. 4672–5.
  • [101] Crea S, De Rossi SMM, Donati M, Reberšek P, Novak D, Vitiello N, et al. Development of gait segmentation methods for wearable foot pressure sensors. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2012. pp. 5018–21.
  • [102] Joo S-B, Oh SE, Sim T, Kim H, Choi CH, Koo H, et al. Prediction of gait speed from plantar pressure using artificial neural networks. Expert Syst Appl 2014;41(16):7398–405.
  • [103] Forsting M. Hot topics: will machine learning change medicine? J Nucl Med 2017. http://dx.doi.org/10.2967/jnumed.117.190397.
  • [104] Obermeyer Z, Emanuel EJ. Predicting the future — big data, machine learning, and clinical medicine. N Engl J Med 2016;375(13):1216–9.
  • [105] Fatima M, Pasha M. Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl 2017;9(1):1–16.
  • [106] Er O, Yumusak N, Temurtas F. Chest diseases diagnosis using artificial neural networks. Expert Syst Appl 2010;37(12):7648–55.
  • [107] Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 2017;201(February):1135–44.
  • [108] Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19(1). http://dx.doi.org/10.1146/annurev-bioeng-071516-044442.
  • [109] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(May (7553)):436–44.
  • [110] Alaqtash M, Yu H, Brower R, Abdelgawad A, Sarkodie- Gyan T. Application of wearable sensors for human gait analysis using fuzzy computational algorithm. Eng Appl Artif Intell 2011;24(6):1018–25.
  • [111] Bogale Ma, Yu H, Sarkodie-Gyan T, Alaqtash M, Moody J, Brower R. Case study on assessment of mild traumatic brain injury using granular computing. Engineering 2012;4(10):11–5.
  • [112] Bogale MA, Yu H, Sarkodie-gyan T, Abdelgawad A. Characterization and quantification of gait deficits within gait phases using fuzzy-granular computing. j Biomed Sci Eng 2012;5(December (12)):720–8.
  • [113] Qian Y, Li Y, Liang J, Lin G, Dang C. Fuzzy granular structure distance. IEEE Trans Fuzzy Syst 2015;23(6):2245–59.
  • [114] Lin TY. Modeling the real world for data mining: granular computing approach. Conf Proc Joint 9th IFSA World Cong 20th NAFIPS Int Conf. 2001. pp. 3044–9.
  • [115] Hatwagner MF, Buruzs A, Torma A, Koczy LT. Introduction of modeling complex management systems using fuzzy cognitive map. 7th Int Conf Int Technol, vol. 2015. 2015. pp. 508–14.
  • [116] Stylios CD, Georgopoulos VC. Fuzzy cognitive maps structure for medical decision support systems. Stud Fuzz Soft Comput 2008;218:151–74.
  • [117] Georgopoulos VC, Malandraki GA, Stylios CD. A fuzzy cognitive map approach to differential diagnosis of specific language impairment. Artif Intell Med 2003;29(3):261–78.
  • [118] Douali N. Clinical decision support system based on fuzzy cognitive maps. J Comput Sci Syst Biol 2015;8(2):112–20.
  • [119] Manimaran A, Chandrasekaran VM, Praba B. A review of fuzzy environmental study in medical diagnosis system. Res J Pharm Technol 2016;9(2):707–9.
  • [120] Zou C, Deng H. Using fuzzy concept lattice for intelligent disease diagnosis. IEEE Access 2017;5:236–42.
  • [121] De SK, Biswas R, Roy AR. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst Jan 2001;117(2):209–13.
  • [122] Pota M, Esposito M, De Pietro G. Interval type-2 fuzzy DSS for unbiased medical diagnosis. 2016 IEEE Int Conf Syst Man Cybern SMC 2016 – Conf Proc. 2017. pp. 3340–5.
  • [123] Peña-Reyes CA, Sipper M. Evolutionary computation in medicine: an overview. Artif Intell Med 2000;19:1–23.
  • [124] Maulik U. Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 2009;13(2):166–73.
  • [125] Smith SL, Gaughan P, Halliday DM, Ju Q, Aly NM, Playfer JR. Diagnosis of Parkinson's disease using evolutionary algorithms. Genet Program Evolvable Mach 2007;8(4):433–47.
  • [126] Bergholt MS, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG, et al. In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. Int J Cancer 2011;128(11):2673–80.
  • [127] Marinakis And Y, Dounias G. Nature inspired intelligence in medicine: ant colony optimization for Pap-smear diagnosis. Int J Artif Intell Tools Apr 2008;17(2):279–301.
  • [128] Selvaraj C, Kumar S, Karnan M. A survey on application of bio-inspired algorithms. Int J Comput Inf Technol 2014;5(6):366–70.
  • [129] Dounias G. Hybrid computational intelligence in medicine; 2003.
  • [130] Woźniak M, Graña M, Corchado E. A survey of multiple classifier systems as hybrid systems. Inf Fusion 2014;16(1):3–17.
  • [131] Hassan MR, Arafat SM, Begg RK. Fuzzy-genetic model for the identification of falls risk gait. Procedia Comput Sci 2016;82(March):4–11.
  • [132] Şahan S, Polat K, Kodaz H, Güneş S. A new hybrid method based on fuzzy-artificial immune system and K-NN algorithm for breast cancer diagnosis. Comput Biol Med 2007;37(3):415–23.
  • [133] Parthiban L, Subramanian R. Intelligent heart disease prediction system using CANFIS and genetic algorithm. Int J Biol Med Sci 2008;3(3):157–60.
  • [134] Martins M, Costa L, Frizera A, Ceres R, Santos C. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait. Comput Methods Programs Biomed 2014;113(3):736–48.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d0b68b9-268a-4591-bbaa-0979587bbd77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.