Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present research, the wear behaviour of magnesium alloy (MA) AZ91D is studied and optimized. MA AZ91D is casted using a die-casting method. The tribology experiments are tested using pin-on-disc tribometer. The input parameters are sliding velocity (1‒3 m/s), load (1‒5 kg), and distance (0.5‒1.5 km). The worn surfaces are characterized by a scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The response surface method (RSM) is used for modelling and optimising wear parameters. This quadratic equation and RSM-optimized parameters are used in genetic algorithm (GA). The GA is used to search for the optimum values which give the minimum wear rate and lower coefficient of friction. The developed equations are compared with the experimental values to determine the accuracy of the prediction.
Rocznik
Tom
Strony
art. no. e135835
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Anna University, Chennai, Tamil Nadu, India
autor
- Department of Mechanical Engineering, Universal College of Engineering and Technology, Vallioor, Tirunelveli, Tamilnadu, India
autor
- Department of Mechanical Engineering, Chandigarh College of Engineering and Technology, Chandigarh, India
autor
- Department of Mechanical Engineering, MET Engineering College, Tamilnadu, India
autor
- Department of Mechanical Engineering, Rohini College of Engineering and Technology, Tamilnadu, India
autor
- Department of Manufacturing Engg, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India
Bibliografia
- [1] S. Kulkarni, D. Edwards, E. Parn, C. Chapman, C. Aigbavboa, and R. Cornish, “Evaluation of vehicle light-weighting to reduce greenhouse gas emissions with focus on magnesium substitution”, J. Eng. Design Technol. 16(6), 869‒888 (2018).
- [2] K. Kudła, J. Iwaszko, and M. Strzelecka, “Surface modification of AZ91 magnesium alloy using GTAW technology”, Bull. Pol. Ac.: Tech. 65(6), 917‒926 (2017).
- [3] K. Soorya Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, and V. Kavimani, “Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites”, J. Magnes. Alloy. 4, 197–206 (2016).
- [4] D. Mehra, M. Mahapatra, and S. Harsha, “Optimizations of RZ5-TiC magnesium matrix composite wear parameters using Taguchi approach”, Ind. Lubr. Tribol. 70(5), 907‒914 (2018).
- [5] E. Ilanaganar and S. Anbuselvan, “Wear mechanisms of AZ31B magnesium alloy during dry sliding condition, Mater. Today: Proceedings 5, 628–635 (2018).
- [6] E. Suneesh and M. Sivapragash, “Comprehensive studies on processing and characterization of hybrid magnesium composites”, Mater. Manuf. Process. 33, 1324‒1345 (2018).
- [7] T. Yue and K. Huang, “Laser cladding of Cu0.5NiAlCoCrFeSi high entropy alloy on AZ91D magnesium substrates for improving wear and corrosion resistance”, World J. Eng. 9(2), 119–124 (2012).
- [8] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, and T. Grosdidier, “Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering”, Acta Mater. 119, 55‒67 (2016).
- [9] P.J. Blau and M. Walukas, “Sliding friction and wear of magnesium alloy AZ91D produced by two different methods”, Tribol. Int. 33, 573–579 (2000).
- [10] S.C. Cagan, M. Aci, B.B. Buldum, and C. Aci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy”, Bull. Pol. Ac.: Tech. 67(4), 729‒739 (2019).
- [11] S. García-Rodríguez, B. Torres, A. Maroto, A.J. Lopez, E. Otero, and J. Rams, “Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites”, Wear 390–391, 1–10 (2017).
- [12] D. Thirumalaikumarasamy, V. Balasubramanian, and S. Sree Sabari, “Prediction and optimization of process variables to maximize the Young’s modulus of plasma sprayed alumina coatings on AZ31B magnesium alloy”, J. Magnes. Alloy. 5, 133–145 (2017).
- [13] A., Mohammadzadeha, M. Ramezania, and A.M. Ghaedib, “Synthesis and characterization of Fe2O3–ZnO–ZnFe2O4 / carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method: Optimization by response surface methodology and genetic algorithm”, J. Taiwan Inst. Chem. Eng. 59, 1–10 (2015).
- [14] M. Vakili-Azghandi, A. Fattah-Alhosseini, and M.K. Keshavarz, “Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: Response surface methodology”, Measurement 124, 252‒259 (2018).
- [15] A. Ciszkiewicz and G. Milewski, “Ligament-based spine-segment mechanisms”, Bull. Pol. Ac.: Tech. 66(5), 705‒712 (2018).
- [16] M. Sivapragash, P. Kumaradhas, B. Stanly Jones Retnam, X. Felix Joseph, and U.T.S. Pillai, “Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy”, Mater. Des. 90. 713–722 (2016).
- [17] Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Ac.: Tech. 67(4), 679‒685 (2019).
- [18] D. Zhang et al., “Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91‒0.5RE based alloy”, Mater. Sci. Eng., A 693, 51‒59 (2017).
- [19] M. Nouioua et al., “Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN)”, Int. J. Adv. Manuf. Technol. 93, 2485–2504 (2017).
- [20] I.M. Yusri et al., “A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel”, Renew. Sust. Energy Rev. 90. 665–686 (2018).
- [21] S. Jacob and R. Banerjee, “Modeling and Optimization of Anaerobic Codigestion of Potato Waste and Aquatic Weed by Response Surface Methodology and Artificial Neural Network coupled Genetic Algorithm”, Bioresour. Technol. 214, 386-395 (2016).
- [22] S. Shanavas and J. Edwin Raja Dhas, “Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology”, Trans. Nonferrous Met. Soc. China 27, 2334−2344 (2017).
- [23] M.N.M. Salleh, M. Ishak, M.M. Quazi, and M.H. Aiman, “Microstructure, mechanical, and failure characteristics of laser-microwelded AZ31B Mg alloy optimized by response surface methodology”, Int. J. Adv. Manuf. Technol. 99, 985–1001 (2018).
- [24] W. Yu, D. Chen, L. Tian, H. Zhao, and X. Wang, “Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases”, J. Mater. Sci. Technol. 35, 275‒284 (2019).
- [25] B.O. Ighose et al., “Optimization of biodiesel production from Thevetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and response surface methodology”, Energy Convers. Manage. 132. 231–240 (2017).
- [26] M.E. Turan, Y. Sun, and Y. Akgul, “Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy”, J. Alloys Compd. 740, 1149‒1158 (2018).
- [27] C. Dong, J. Sun, Z. Cheng, and Y. Hou, “Preparation and tribological properties of a microemulsion for magnesium alloy warm rolling”, Ind. Lubr. Tribol. 71(1), 74‒82 (2018).
- [28] A. Zafari, H.M. Ghasemi, and R. Mahmudi, “Tribological behavior of AZ91D magnesium alloy at elevated temperatures”, Wear 292–293, 33–40 (2012).
- [29] C. Liang, X. Han, T.F. Su, C. Li, and J. An, “Sliding Wear Map for AZ31 Magnesium Alloy”, Tribol. Trans. 57, 1077‒1085 (2014).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2d0631f1-eb8f-4957-afed-d6bf3bc7e10f