PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Innovative Methodological Approach for the Study of Ancient Cistern Waterproofing Mortar of Sagunto Castle

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Innowacyjne podejście metodologiczne do badania starożytnej zaprawy hydroizolacyjnej cystern zamku Sagunto
Języki publikacji
EN
Abstrakty
EN
In this work, we present the results of the chemical, mineralogical and colorimetric characterization of the waterproofing mortars from the ancient cisterns of the Sagunto Castle (Valencia, Spain). The fortress presents 2500 years of human occupation and, given the lack of natural water sources, collecting and storing rain water was mandatory ever since. Nowadays, several cisterns are found in the hill, and thus the application of analytical approaches can help in characterizing each layer within the cultural phases of the Castle’s history (Iberian, Punic, Roman, Islamic, Medieval, Modern or Contemporary). Mineralogical analyses were carried out employing X-ray diffractometry and mid-infrared attenuated total reflection spectroscopy, and, on the other hand, the portable energy dispersive X-ray fluorescence spectroscopy was employed to obtain the concentrations of major and minor chemical elements. Colour features of the samples were identified by smartphone photo processing to observe possible relation between colour and waterproofing mortar compounds. Last, Raman spectroscopy was employed to analyze the different phases present in the samples. Multivariate statistics were employed to identify different waterproofing mortar layers and develop hypotheses concerning different construction phases and compare their manufacturing processes. Analytical results allowed to find common patterns among different cisterns and mortar layers, and colorimetric analyses showed good potential as an additional fast, cheap and non-destructive source of information for studying these types of samples.
Rocznik
Strony
195--201
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia. C/ Dr. Moliner, 50, Burjassot, 46100, Spain
  • Department of Prehistory, Archaeology and Ancient History, University of Valencia, Avenida de Blasco Ibáñez 28, 46010 Valencia, Spain
  • Department of Prehistory, Archaeology and Ancient History, University of Valencia, Avenida de Blasco Ibáñez 28, 46010 Valencia, Spain
  • Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
  • Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
  • Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia. C/ Dr. Moliner, 50, Burjassot, 46100, Spain
  • Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia. C/ Dr. Moliner, 50, Burjassot, 46100, Spain
Bibliografia
  • 1. G. Gallello, M. Ramacciotti, M. Lezzerini, E. Hernandez, M. Calvo, A. Morales, A. Pastor, M. de la Guardia, Indirect chronology method employing rare earth elements to identify Sagunto Castle mortar construction periods. Microchemical Journal. 132, 251–261 (2017).
  • 2. M. E. Moliner Cantos, L. M. Almena Gil, S. Tormo Esteve, “Restauración en el castillo de Sagunto, Valencia,” Informes y trabajos (Instituto del Patrimonio Cultural de España, Madrid, 2019), (available at https://www.libreria.culturaydeporte.gob.es/libro/informes-y-trabajos-18_3905/).
  • 3. C. García-Florentino, M. Maguregui, H. Morillas, I. Marcaida, J. M. Madariaga, A fast in situ noninvasive approach to classify mortars from a construction of high historical value. Microchemical Journal. 133, 104–113 (2017).
  • 4. C. Genestar, C. Pons, A. Más, Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Analytica Chimica Acta. 557, 373–379 (2006).
  • 5. M. F. La Russa, N. Rovella, C. Pelosi, D. Rossi, M. Benucci, G. Romagnoli, V. E. Selva Bonino, A. Casoli, S. A. Ruffolo, A multi-analytical approach applied to the archaeometric study of mortars from the Forty Martyrs rupestrian complex in Cappadocia (Turkey). Microchemical Journal. 125, 34–42 (2016).
  • 6. J. M. Madariaga, M. Maguregui, K. Castro, U. Knuutinen, I. Martínez-Arkarazo, Portable Raman, DRIFTS, and XRF analysis to diagnose the conservation state of two wall painting panels from pompeii deposited in the Naples National Archaeological Museum (Italy). Applied Spectroscopy. 70, 137–146 (2016).
  • 7. D. Vlase, M. Codruţa, G. Vlase, R. Lazău, T. Vlase, Comparative analyses of Roman mortars belonging to different ancient periods from Drobeta-Turnu Severin region. Journal of Thermal Analysis and Calorimetry. 141, 991–998 (2020).
  • 8. M. Ramacciotti, S. Rubio, G. Gallello, M. Lezzerini, S. Columbu, E. Hernandez, A. Morales-Rubio, A. Pastor, M. De La Guardia, Chronological classification of ancient mortars employing spectroscopy and spectrometry techniques: Sagunto (Valencia, Spain) Case. Journal of Spectroscopy. 2018 (2018), doi:10.1155/2018/9736547.
  • 9. M. Pérez-Alonso, K. Castro, I. Martinez-Arkarazo, M. Angulo, M. A. Olazabal, J. M. Madariaga, Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal Bioanal Chem. 379, 42–50 (2004).
  • 10. M. Maguregui, U. Knuutinen, J. Trebolazabala, H. Morillas, K. Castro, I. Martinez-Arkarazo, J. M. Madariaga, Use of in situ and confocal Raman spectroscopy to study the nature and distribution of carotenoids in brown patinas from a deteriorated wall painting in Marcus Lucretius House (Pompeii). Anal Bioanal Chem. 402, 1529–1539 (2012).
  • 11. G. Zappia, C. Sabbioni, G. Gobbi, Non-carbonate carbon content on black and white areas of damaged stone monuments. Atmospheric Environment Part A, General Topics. 27, 1117–1121 (1993).
  • 12. A. M. Conte, L. Corda, D. Esposito, E. Giorgi, Characterization of mortars from the medieval Abbey of Cerrate (southern Italy). Journal of Archaeological Science: Reports. 12, 463–479 (2017).
  • 13. P. Sanmartín, D. Vázquez-Nion, B. Silva, B. Prieto, Spectrophotometric color measurement for early detection and monitoring of greening on granite buildings. Biofouling. 28, 329–338 (2012).
  • 14. M. Ramacciotti, G. Gallello, M. Lezzerini, S. Pagnotta, A. Aquino, L. Alapont, J. A. Martín Ruiz, A. Pérez-Malumbres Landa, R. Hiraldo Aguilera, D. Godoy Ruiz, A. Morales-Rubio, M. L. Cervera, A. Pastor, Smartphone application for ancient mortars identification developed by a multi-analytical approach. Journal of Archaeological Science: Reports. 43, 103433 (2022).
  • 15. M. J. L. J. Malo, ColorLab: the Matlab toolbox for Colorimetry and Color Vision (2002), (available at http://isp.uv.es/code/visioncolor/colorlab.html).
  • 16. R. Core-Team, R: A language and environment for statistical computing (2021), (available at https://www.r-project.org/).
  • 17. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (2016).
  • 18. A. Stevens, L. Ramirez-Lopez, G. Hans, prospectr: Miscellaneous Functions for Processing and Sample Selection of Spectroscopic Data (2020), (available at https://cran.rproject.org/package=prospectr).
  • 19. Signal processing (2013), (available at http://r-forge.r-project.org/projects/signal/).
  • 20. V. H. J. M. dos Santos, D. Pontin, G. G. D. Ponzi, A. S. de G. e Stepanha, R. B. Martel, M. K. Schütz, S. M. O. Einloft, F. Dalla Vecchia, Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement. Construction and Building Materials. 313, 125413 (2021).
  • 21. S. S. Potgieter-Vermaak, R. H. M. Godoi, R. V. Grieken, J. H. Potgieter, M. Oujja, M. Castillejo, Microstructural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 61, 2460–2467 (2005).
  • 22. H. Morillas, M. Maguregui, J. Trebolazabala, J. M. Madariaga, Nature and origin of white efflorescence on bricks, artificial stones, and joint mortars of modern houses evaluated by portable Raman spectroscopy and laboratory analyses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 136, 1195–1203 (2015).
  • 23. D. Cosano, L. D. Mateos, C. Jiménez-Sanchidrián, J. R. Ruiz, Identification by Raman microspectroscopy of pigments in seated statues found in the Torreparedones Roman archaeological site (Baena, Spain). Microchemical Journal. 130, 191–197 (2017).
  • 24. D. Chiriu, G. Desogus, F. A. Pisu, D. R. Fiorino, S. M. Grillo, P. C. Ricci, C. M. Carbonaro, Beyond the surface: Raman micro-SORS for in depth non-destructive analysis of fresco layers. Microchemical Journal. 153, 104404 (2020).
  • 25. A. Rousaki, C. Vázquez, V. Aldazábal, C. Bellelli, M. Carballido Calatayud, A. Hajduk, E. Vargas, O. Palacios, P. Vandenabeele, L. Moens, The first use of portable Raman instrumentation for the in situ study of prehistoric rock paintings in Patagonian sites. Journal of Raman Spectroscopy. 48, 1459–1467 (2017).
  • 26. J. Chen, L. Gao, S. Guo, M. Omran, G. Chen, Evaluation of the structure and valence state of titanium oxide in titania slag under microwave heating. Materials Letters. 310, 131475 (2022).
  • 27. D. Krishnamurti, The Raman spectrum of rutile. Proc. Indian Acad. Sci. 55, 290–299 (1962).
  • 28. M. Maguregui, U. Knuutinen, I. Martínez-Arkarazo, A. Giakoumaki, K. Castro, J. M. Madariaga, Field Raman analysis to diagnose the conservation state of excavated walls and wall paintings in the archaeological site of Pompeii (Italy). Journal of Raman Spectroscopy. 43, 1747–1753 (2012)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cfbd069-bf5c-468a-83d7-8697222eebd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.