PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of warm forming process parameters on 42CrMo4 skew rolled bar mechanical properties and microstructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Skew rolling is a manufacturing process in which two or three rolls are used to reduce the diameter or modify the shape of a cylindrical workpiece, which is used to manufacture mechanical components such as shafts, rods or balls. Hot conditions are used to overcome limitations related to material ductility, residual stress and machine capacity. In this paper, the warm skew rolling (WSR) process of 42CrMo4 rods is modeled by the finite element method. The effects of forming parameters, namely initial temperature and roll rotational velocity, on the material strain rate, thermal properties, microstructure and hardness were analyzed. Simulation results were validated by experimental process data, while hardness tests and SEM-EBSD microscopy were used to assess mechanical properties and microstructure, respectively. The WSR resulting microstructure is different from the normalized ferritic-pearlitic initial one. The degree of spheroidization (DoS) of cementite increases with temperature. The maximum DoS of 86.5% occurs at the initial temperature of 750 °C, leading to the highest material softening. Rolling from lower temperatures favors grain fragmentation and the achievement of incomplete spheroidization, which, in combination with the highest proportion of high-angle boundaries, contributes to a higher hardness of the rods with respect to those rolled at higher temperatures. The highest reduction in hardness takes place at 750 °C and 30 rpm, leading to 209.4 HV1 (30.7% reduction) and 194.1 HV1 (35.7% reduction) in the near-surface and internal regions, respectively. The driving factor is the transformation of cementite precipitates into a spheroidal form characterized by the greatest degree of dispersion.
Rocznik
Strony
art. no. e90, 2024
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanics, Design and Industrial Management, University of Deusto, Avda Universidades 24, 48007 Bilbao, Spain
  • Lublin University of Technology, Nadbystrzycka 36, 20‑618 Lublin, Poland
  • Department of Mechanics, Design and Industrial Management, University of Deusto, Avda Universidades 24, 48007 Bilbao, Spain
  • Department of Mechanics, Design and Industrial Management, University of Deusto, Avda Universidades 24, 48007 Bilbao, Spain
  • Lublin University of Technology, Nadbystrzycka 36, 20‑618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 36, 20‑618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 36, 20‑618 Lublin, Poland
Bibliografia
  • 1. Pater Z, Tomczak J, Bulzak T, Wojcik Ł, Skripalenko MM. Prediction of ductile fracture in skew rolling processes. Int J Mach Tools Manuf. 2021;163: 103706. https://doi.org/10.1016/j.ijmachtools.2021.103706.
  • 2. Zhang H, Wang B, Lin L, Feng P, Zhou J, Shen J. Numerical analysis and experimental trial of axial feed skew rolling for forming bars. Arch Civ Mech Eng. 2021;22:17. https://doi.org/10.1007/s43452-021-00334-z.
  • 3. Yamane K, Shimoda K, Kuroda K, Kajikawa S, Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J Mater Process Technol. 2021;291: 116989. https://doi.org/10.1016/j.jmatprotec.2020.116989.
  • 4. Kache H, Stonis M, Behrens B-A. Development of a warm cross wedge rolling process using FEA and downsized experimental trials. Prod Eng. 2012;6:339-48. https://doi.org/10.1007/s11740-012-0379-5.
  • 5. Behrens B-A, Suchmann P, Schott A. Warm forging: new forming sequence for the manufacturing of long flat pieces. Prod Eng. 2008;2:261-8. https://doi.org/10.1007/s11740-008-0114-4.
  • 6. Huang X, Wang B, Zhou J, Ji H, Mu Y, Li J. Comparative study of warm and hot cross-wedge rolling:numerical simulation and experimental trial. Int J Adv Manuf Technol. 2017;92:3541-51. https://doi.org/10.1007/s00170-017-0399-6.
  • 7. Maropoulos S, Ridley N. Inclusions and fracture characteristics of HSLA steel forgings. Mater Sci Eng A. 2004;384:64-9. https://doi.org/10.1016/j.msea.2004.05.023.
  • 8. Costa LL, Brito AMG, Rosiak A, Schaeffer L. Microstructure evolution of 42CrMo4 during hot forging process of hollow shafts for wind turbines. Int J Adv Manuf Technol. 2020;106:511-7. https://doi.org/10.1007/s00170-019-04642-w.
  • 9. Bayrak M, Ozturk F, Demirezen M, Evis Z. Analysis of tempering treatment on material properties of DIN 41Cr4 and DIN 42CrMo4 steels. J Mater Eng Perform. 2007;16:597-600. https://doi.org/10.1007/s11665-007-9043-1.
  • 10. Diefenbach J, Brunotte K, Behrens B-A. Microstructure and Mechanical Properties of Thermomechanically Forged Tempering Steel 42CrMo4. In: Behrens B-A, Brosius A, Hintze W, Ihlenfeldt S, Wulfsberg JP, editors. Prod. Lead. Edge Technol., Berlin, Heidelberg: Springer Berlin Heidelberg; 2021, p. 142-50.
  • 11. Szala M, Winiarski G, Wojcik Ł, Bulzak T. Effect of annealing time and temperature parameters on the microstructure, hardness, and strain-hardening coefficients of 42CrMo4 steel. Materials. 2020;13:2022. https://doi.org/10.3390/ma13092022.
  • 12. Hu J, Du L-X, Xie H, Yu P, Misra RDK. A nanograined/ultrafine-grained low-carbon microalloyed steel processed by warm rolling. Mater Sci Eng A. 2014;605:186-91. https://doi.org/10.1016/j.msea.2014.03.064.
  • 13. Xiong Y, Sun S, Li Y, Zhao J, Lv Z, Zhao D, et al. Effect of warm cross-wedge rolling on microstructure and mechanical property of high carbon steel rods. Mater Sci Eng A. 2006;431:152-7. https://doi.org/10.1016/j.msea.2006.05.148.
  • 14. Shu X, Shi J, Chen J, Yang H. Effects of process parameters on surface quality of shaft parts formed by warm cross-wedge rolling. Int J Adv Manuf Technol. 2021;113:2819-31. https://doi.org/10.1007/s00170-021-06784-2.
  • 15. Sun SH, Xiong Y, Zhao J, Lv ZQ, Li Y, Zhao DL, et al. Microstructure characteristics in high carbon steel rod after warm cross-wedge rolling. Scr Mater. 2005;53:137-40. https://doi.org/10.1016/j.scriptamat.2005.01.011.
  • 16. Lee Y, Yoon E, Nho T, Moon Y. Microstructure control of ferrous driven part fabricated by warm precision forging. Procedia Manuf. 2018;15:404-10. https://doi.org/10.1016/j.promfg.2018.07.236.
  • 17. Cui M-C, Zhao S-D, Zhang D-W, Chen C, Li Y-Y. Finite element analysis on axial-pushed incremental warm rolling process of spline shaft with 42CrMo steel and relevant improvement. Int J Adv Manuf Technol. 2017;90:2477-90. https://doi.org/10.1007/s00170-016-9566-4.
  • 18. Serajzadeh S. Modelling the warm rolling of a low carbon steel. Mater Sci Eng A. 2004;371:318-23. https://doi.org/10.1016/j.msea.2003.12.007.
  • 19. Koohbor B, Ohadi D, Serajzadeh S, Akhgar JM. Effect of rolling speed on the occurrence of strain aging during and after warm rolling of a low-carbon steel. J Mater Sci. 2010;45:3405-12. https://doi.org/10.1007/s10853-010-4365-z.
  • 20. Serajzadeh S, Mohammadzadeh M. Effects of deformation parameters on the final microstructure and mechanical properties in warm rolling of a low-carbon steel. Int J Adv Manuf Technol. 2007;34:262-9. https://doi.org/10.1007/s00170-006-0594-3.
  • 21. Huo Y, He T, Wang B, Zheng Z, Yang W, Hu Y, et al. Forming analysis of steel ball bearings made with warm skew rolling. Mater Tehnol. 2020;54:417-22. https://doi.org/10.17222/mit.2019.201.
  • 22. Huo Y, He T, Wang B, Zheng Z, Xue Y. Numerical prediction and experimental validation of the microstructure of bearing steel ball formation in warm skew rolling. Metall Mater Trans A. 2020;51:1254-63. https://doi.org/10.1007/s11661-019-05589-z.
  • 23. Murillo-Marrodan A, Garcia E, Barco J, Cortes F. Analysis of wall thickness eccentricity in the rotary tube piercing process using a strain correlated FE model. Metals. 2020;10:1045. https://doi.org/10.3390/met10081045.
  • 24. Murillo-Marrodan A, Garcia E, Cortes F. A Study of friction model performance in a skew rolling process numerical simulation. Int J Simul Model. 2018;17:569-82. https://doi.org/10.2507/IJSIMM17(4)441.
  • 25. Najafi S, Eivani AR, Samaee M, Jafarian HR, Zhou J. A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater Charact. 2018;136:60-8. https://doi.org/10.1016/j.matchar.2017.12.004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cf7506c-661d-438a-b5fd-5ee78c88147f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.