Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As the duration of a rock burst is very short and the roadway is seriously damaged after the disaster, it is difficult to observe its characteristics. In order to obtain the dynamic characteristics of a rock burst, a modified uniaxial compression experiment, combined with a high-speed camera system is carried out and the process of a rock burst caused by a static load is simulated. Some significant results are obtained: 1) The velocity of ejected particles is between 2 m/s and 4 m/s. 2) The ratio of elastic energy to plastic energy is about five. 3) The duration from integrity to failure is between 20 ms and 40 ms. Furthermore, by analyzing the stress field in the sample with a numerical method and crack propagation model, the following conclusions can be made: 1) The kinetic energy of the ejected particles comes from the elastic energy released by itself. 2) The ratio of kinetic energy to elastic energy is between 6% and 15%. This can help understand the source and transfer of energy in a rock burst quantitatively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
43--56
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- China University of Mining & Technology (Beijing), School oF Energy and Mining Engineering 2
- State Key Laboratory of Coal Mining and Clean Utilization, China
Bibliografia
- [1] F. Ren, C. Zhu, M. He, Moment Tensor Analysis of Acoustic Emissions for Cracking Mechanisms During Schist Strain Burst. Rock Mech. Rock Eng. 53, 1-2(2019). DOI: 10.1007/s00603-019-01897-3.
- [2] G . Su Y. Shi, X. Feng, J. Jiang, J. Zhang, Q. Jiang, True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes. Rock Mech. Rock Eng. 51, 375-389 (2018). DOI: 10.1007/ s00603-017-1344-6.
- [3] F. Gong, Y. Luo, X. Li, X. Si, M. Tao, Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn. Undergr. Sp. Tech. 81, 413-427(2018). DOI: 10.1016/j.tust.2018.07.035.
- [4] S.H. Cho, Y. Ogata, K. Kaneko, A method for estimating the strength properties of a granitic rock subjected to dynamic loading. Int. J. Rock Mech. Min. 42 (4), 561-568(2005). DOI: 10.1016/j.ijrmms.2005.01.004.
- [5] J. Wang, H.D. Park, Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn. Undergr. Sp. Tech. 16 (1), 49-57(2001). DOI: 10.1016/S0886-7798(01)00030-X.
- [6] M.N. Bagde, V. Petorš, Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. Int. J. Rock Mech. Min. Sci. 42 (2), 237-250(2005). DOI: 10.1016/j.ijrmms.2004.08.008.
- [7] M. Cai, H. Morioka, P.K. Kaiser, Y. Tasaka, H. Kurose, M. Minami, T. Maejima, Back-analysis of rock mass strength parameters using AE monitoring data. Int. J. Rock Mech. Min. 44 (4), 538-549(2007). DOI: 10.1016/j.ijrmms.2006.09.012.
- [8] K. Du, M. Tao, X. Li, J. Zhou, Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance. Rock Mech. Rock Eng. 49 (9), 3437-3453(2016). DOI: 10.1007/s00603-016-0990-4.
- [9] R . Simon, PhD thesis, Analysis of fault-slip mechanisms in hard rock mining, McGill University, Quebec/Montreal, Canada (1999).
- [10] N .G. Cook, The failure of rock. Int. J. Rock Mech. Min. 2 (4), 389-403(1965). DOI: 10.1016/0148-9062(65)90004-5.
- [11] P.N. Calder, D. Madsen, High frequency precursor analysis prior to a rockburst. Int. J. Rock Mech. Min. Geomech. Abstr.26, 3-4 (1989). DOI: 10.1016/0148-9062(89)92469-8.
- [12] Z.T. Bieniawski, Mechanism of brittle fracture of rock: Part II—experimental studies. Int. J. Rock Mech. Min. 4 (4), 407-423 (1967). DOI: 10.1016/0148-9062(67)90031-9.
- [13] S.P. Singh, Burst energy release index. Rock Mech. Rock Eng. 21 (2), 149-155 (1988). DOI: 10.1007/BF01043119.
- [14] A. Kidybiński, Bursting liability indices of coal. Int. J. Rock Mech. Min. Sci. 18 (4), 295-304 (1981). DOI: 10.1016/0148-9062(81)91194-3.
- [15] A. Tajduś, M. Cala, K. Tajduś, Seismicity and Rock Burst Hazard Assessment in Fault Zones: a Case Study. Arch. Min. Sci. 63 (3), 747-765 (2018). DOI: 10.24425/123695.
- [16] W.D. Ortlepp, T.R. Stacey, Rockburst mechanisms in tunnels and shafts. Tunn. Undergr. Sp. Tech. 9 (1), 59-65 (1994). DOI: 10.1016/0886-7798(94)90010-8.
- [17] H . Marcak, Seismicity in mines due to roof layer bending. Arch. Min. Sci. 57 (1), 229-250 (2012). DOI: 10.2478/v10267-012-0016-3.
- [18] T.J. Williams, C.J. Wideman, D.F. Scott, Case history of a slip-type rockburst. Pure Appl. Geophys. 139, 627-637 (1992). DOI: 10.1007/BF00879955.
- [19] A.A. Griffith, VI. The phenomena of rupture and flow in solids. Phil. Trans. Math. Phys. Eng. Sci. 221 (582-593), 163-198 (1921). DOI: 10.1098/rsta.1921.0006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cf48195-ed09-4d0d-8807-a72ff55acbba