PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnet eddy-current loss reduciton in a high-speed permanent magnet machine with concentrated windings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Redukcja strat wiroprądowych w magnesach w wysokoobrotowym silniku synchronicznym z uzwojeniami skupionymi
Języki publikacji
EN
Abstrakty
EN
A radial high-speed permanent magnet (PM) machine with concentrated windings (operating frequency up to 800Hz) is selected for automotive application based on hybrid variants. This paper presents selected methods for magnet eddy-current loss reduction by rotor and stator modifications. The first approach to rotor modification regards magnet segmentation in circumferential and axial directions. The second approach is based on changes in tooth-tips shape. The best variants of tooth-tip shapes are determined for further investigation, and adapted with rotor having magnet segmentation. The machine with segmented magnet leads to magnet loss reduction by 81%. Further loss reduction by 45% can be realized with the proposed tooth-tip shape. Furthermore, the most important machine parameters are investigated. The 2-D and 3-D finie element analysis (FEA) is used for electromagnetic analysis. An experimental approach based on a partially wound stator is employed to verify the 3-D FEA.
PL
Celem pracy jest zaprezentowanie wybranych technik redukcji prądȯw wirowych w magnesach w wysokoobrotowym (częstotliwość zasilania do 800Hz) silniku synchronicznym z magnesami trwałymi, przeznaczonym do aplikacji w ciężkich pojazdach z napędem elektrycznym. W pierwszym podejściu zastosowano segmentacje magnesów w kierunku osiowym i radialnym (redukcja prądów wirowych indukowanych w magnesach do 80%). W drugiej metodzie zbadano kształt profilu nabiegunników stojana (obniżenie strat mocy w magnesach do 45%). Finalnym celem pracy będzie wybranie najlepszych wariantów nabiegunnika stojana i zaadoptowanie ich do silnika z segmentacją magnesów, co powinno znacznie poprawić sprawność silnika. Dla tych rozwiązań zbadano najważniejsze parametry silnika. Obliczenia numeryczne przeprowadzono na modelach polowych 2-D i 3-D bazujących na metodzie elementów skończonych.
Rocznik
Strony
31--37
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland
Bibliografia
  • [1] H. Toda, Z. Xia, J. Wang, K. Atallah " Rotor eddy-current loss in permanent magnet brushless machines", IEEE Trans. Magn., no. 4, pp. 2104-2106, 2004.
  • [2] P. Lindh, J. Nerg, J. Pyrhonen, M Polikarpova, H. Jussila, M. Rilla "Interior permanent magnet motors with non-overlapping concentrated winding or with integral slot winding for traction application", Przeglad Elektrotechniczny, no. 7b, pp. 9-12, 2012.
  • [3] A.M. EL-Rafeie, J.P. Alexander, S. Calioto, P.B. Reddy, K.K. Huh, P. Bock, X. Shen "Advanced high-power-density interior permanent magnet motor for traction applications", IEEE Transactions on Industry Application, no. 5, pp. 3235-3248, 2014.
  • [4] A. Wang, W. Xi, H. Wang, Y. Alsmadi, L. Xu "FEA-based performance calculation of IPM machines with five topologies for hybrid-electric vehicle traction", Transportation Electrification Asia-Pacific, IEEE Conference and Expo, pp. 1-5, 2014.
  • [5] J. Wang, X. Juan, K. Atallah "Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle application", IEEE Transactions on Vehicular Technology, no. 3, pp. 1053-1064, 2013.
  • [6] R. Dutta, M.F. Rahman "A segmented magnet interior permanent magnet machine with wide constant power range for application in hybrid vehicles", Vehicle Power and Propulsion, IEEE Conference, pp. 7-9, 2005.
  • [7] A.C. Malloy, A. Mlot, M.J. Cordner, M. Lamperth "Axial flux machines for hybrid module application", IEEE International Electric Vehicle Conference, 2014.
  • [8] T. Aslan, E. Semail, J. Legranger "General analytical model of magnet average eddy-current volume losses for comparison of multiphase PM machines with concentrated winding", IEEE Transaction, no. 1, pp. 72-83, 2014.
  • [9] W.Y. Huang, A. Bettayeb, R. Kaczmarek, J.C. Vannier "Optimization of magnet segmentation for reduction of eddy-current losses in permanent magnet synchronous machine", IEEE Transactions on Energy Conversion, no. 2, pp. 381-387, 2010.
  • [10] K. Yamazaki, Y. Fukushima "Effect of eddycurrent loss reduction by magnet segmentation In synchronous motors with concentrated windings", IEEE Transaction on Industry Applications, no. 2, pp. 779-788, 2011.
  • [11] D.A. Wills, M.J. Kamper "Reducing PM Eddy current rotor losses by partial magnet and rotor yoke segmentation", XIX International Conference on Electrical Machines, pp. 1-6, 2010.
  • [12] Y. Kawase, T. Ota, H. Fukunaga "3-D Eddy current analysis in permanent magnet of interior permanent magnet motors", IEEE Trans. Magn., no. 4, pp. 1863-1866, 2014.
  • [13] D. Ishak, Q. Zhu, D. Howe "Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole", IEEE Trans. Magn., no. 9, pp. 2462-2469, 2005.
  • [14] G. Dajaku, D. Gerling "A novel tooth concentrated winding with low space harmonic contents", IEEE International Electric Machines & Drives Conference, pp. 755-760, 2013.
  • [15] G. Dajaku, D. Gerling "Eddy current loss minimization in motor magnets of PM machines using high-efficiency 12-teeth/10-slot winding topology", International Conference on Electrical Machines and Systems, pp. 1-6, 2011.
  • [16] K. Yamazaki, Y. Kanou, Y. Fukushima, S. Ohki, A. Nezu, T. Ikemi, R. Mizokami "Reduction of magnet eddy-current loss in interior permanent magnet motors with concentrated windings", IEEE Transactions on Industry Applications, no. 6, pp. 2434-2441, 2010.
  • [17] K. Yamazaki, H. Ishigami "Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses", IEEE Transactions on Industrial Electronics, no. 1, pp. 61-69, 2010.
  • [18] A. Mlot, M. Korkosz, M. Lukaniszyn "Investigation of end winding proximity losses in a highspeed PM machine", Analysis and Simulations of Electrical and Computer Systems, Lecture Notes In Electrical Engineering, pp. 171-186, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cf3681b-e751-4c91-bb42-c0d6ca5e6476
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.