PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of different binder combinations of cement, slag and ckd for s/s treatment of tbt contaminated sediments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The seabed in the ports needs to be regularly cleaned from the marine sediments for safe navigation. Sediments contaminated by tributyltin (TBT) are environmentally harmful and require treatment before recycling. Treatment methods include leaching, stabilisation and solidification to remove toxic chemicals from the sediments and improve their strength for reuse in the construction works. This study evaluated the effects of adding three different binder components (cement, cement kiln dust (CKD) and slag) to treat sediment samples collected in the port of Gothenburg. The goal of this study is to assess the leaching of TBT from the dredged marine sediments contaminated by TBT. The various methods employed for the treatment of sediments include the application of varied ratios of binders. The project has been performed by the Swedish Geotechnical Institute (SGI) on behalf of the Cementa (HeidelbergCement Group) and Cowi Consulting Group, within the framework of the Arendal project. An experiment has been designed to evaluate the effects of adding CKD while reducing cement and slag for sediment treatment. Methods that have been adopted include laboratory processing of samples for leaching using different binder combinations, followed by statistical data processing and graphical plotting. The results of the experiment on leaching of TBT for all samples are tested with a varied ratio of cement, slag, CKD and water. Specimens with added binders 'cement/CKD' have demonstrated higher leaching compared to the ratio 'cement/slag/CKD' and 'cement/slag'. The 'CKD/slag' ratio has presented the best results followed by the ‘cement/slag/CKD’, and can be used as an effective method of s/s treatment of the sediments. The results have shown that the replacement of cement and slag by CKD is effective at TBT leaching for the treatment of toxic marine sediments contaminated by TBT.
Słowa kluczowe
Rocznik
Strony
236--248
Opis fizyczny
Bibliogr. 102 poz., rys., wykr.
Twórcy
autor
  • Swedish Transport Administration, Gibraltargatan 7, Malmö, Sweden
  • Lund University, Division of Building Materials, Box 118, SE-221-00, Lund, Sweden
  • Université Libre de Bruxelles. École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis, Bld. L, Campus de Solbosch, Avenue Franklin Roosevelt 50, Brussels 1000, Belgium
Bibliografia
  • 1. Abdel-Gawwad H. A., Heikal M., Mohammed M. S., El-Aleem S. A., Hassan H. S., García S. V., Alomayri T. (2019), Sustainable disposal of cement kiln dust in the production of cementitious materi-als. Journal of Cleaner Production, 232 1218–1229. https://doi.org/10.1016/j.jclepro.2019.06.016
  • 2. Abraham M., Westphal L., Hand I., Lerz A., Jeschek J., Bunke D., Leipe T., Schulz-Bull D. (2017), TBT and its metabolites in sed-iments: Survey at a German coastal site and the central Baltic Sea. Marine Pollution Bulletin, 121, 1–2, 404-410. https://doi.org/10.1016/j.marpolbul.2017.06.020
  • 3. Adeyanju E., Okeke C. A., Akinwumi I., Busari A. (2020), Sub-grade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD). Case Studies in Construction Materi-als, 13, e00388. https://doi.org/10.1016/j.cscm.2020.e00388
  • 4. Ahmad S., Hakeem I., Maslehuddin M. (2014), Development of UHPC mixtures utilizing natural and industrial waste materials as par-tial replacements of silica fume and sand. The Scientific World Jour-nal, 713531. https://doi.org/10.1155/2014/713531
  • 5. Ai H., Clavier K. A., Watts B. E., Gale S. A., Townsend T. G. (2019), The efficacy of pH-dependent leaching tests to provide a rea-sonable estimate of post-carbonation leaching, Journal of Hazardous Materials, 373, 204-211. https://doi.org/10.1016/j.jhazmat.2019.03.089
  • 6. Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., Beolchini, F. (2015), A review of approaches and techniques used in aquatic con-taminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24-36. https://doi.org/10.1016/j.jclepro.2014.08.009
  • 7. Al-Homidy A. A., Dahim M. H., Abd El Aal A. K. (2017), Improve-ment of geotechnical properties of sabkha soil utilizing cement kiln dust. Journal of Rock Mechanics and Geotechnical Engineering, 9, 749–760. https://doi.org/10.1016/j.jrmge.2016.11.012
  • 8. Alshemmari H., Al-Awadi M., Karam Q., Talebi L. (2020), Sedi-mentary butyltin compounds and sediment transport model at the Shuwaikh Port, Kuwait Bay. Arabian Journal of Geosciences, 13, 677. https://doi.org/10.1007/s12517-020-05683-2
  • 9. Alzieu C. (2000), Impact of Tributyltin on Marine Invertebrates. Eco-toxicology, 9, 71–76 https://doi.org/10.1023/A:1008968229409
  • 10. Antizar-Ladislao B. (2008), Environmental levels, toxicity and hu-man exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International, 34, 2, 292-308. https://doi.org/10.1016/j.envint.2007.09.005
  • 11. Bagheri S. M., Koushkbaghi M., Mohseni E., Koushkbaghi S., Tah-mouresi B. (2020), Evaluation of environment and economy vi-able recycling cement kiln dust for use in green concrete. Journal of Building Engineering, 32, 101809. https://doi.org/10.1016/j.jobe.2020.101809
  • 12. Baghriche M., Achour S., Baghriche O. (2020), Combined effect of cement kiln dust and calcined dolomite raw on the properties of per-formance magnesium phosphate cement. Case Studies in Construc-tion Materials, 13, e00386. https://doi.org/10.1016/j.cscm.2020.e00386
  • 13. Baltic Marine Environment Protection Commission (2015), HEL-COM Guidelines for Management of Dredged Material at Sea and HELCOM Reporting Format for Management of Dredged Material at Sea [Online access: 18.08.2021]. URL: https://helcom.fi/media/publications/HELCOM-Guidelines-for-Management-of-Dredged-Material-at-Sea.pdf
  • 14. Bandara K. R. V., Chinthaka S. D. M., Yasawardene S. G., Man-age P. M. (2021), Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka. Marine Pollution Bulletin, 166, 112202. https://doi.org/10.1016/j.marpolbul.2021.112202
  • 15. Bandyopadhyay S. S. (1981). Soil Stabilization with Preheater Fines. Journal of the Geotechnical Engineering Division, 107(5), 654-658. https://doi.org/10.1061/AJGEB6.0010706
  • 16. Barnat-Hunek D., Góra J., Suchorab Z., Łagód G. (2018), 5 – cement kiln dust. In: Waste and Supplementary Cementitious Materi-als in Concrete. (eds.: Siddique, R., Cachim, P.) Woodhead Publish-ing. Wood-head Publishing Series in Civil and Structural Engineering. 149–180. https://doi.org/10.1016/B978-0-08-102156-9.00005-5
  • 17. Berto D., Giani M., Boscolo R., Covelli S., Giovanardi O., Massi-roni M., Grassia L. (2007), Organotins (TBT and DBT) in water, sed-iments, and gastropods of the southern Venice lagoon (Italy). Marine Pollution Bulletin, 55(10-12), 425-35. https://doi.org/10.1016/j.marpolbul.2007.09.005
  • 18. Blanck H., Dahl B. (1998), Recovery of marine periphyton communi-ties around a Swedish marina after the ban of TBT use in antifouling paint. Marine Pollution Bulletin, 36, 6, 437-442. https://doi.org/10.1016/S0025-326X(97)00209-9
  • 19. Cato I. (1977), Recent sedimentological and geochemical conditions and pollution problems in two marine areas in south-western Swe-den. Striae 6, Societas Upsaliensis Pro Geologia Quaternaria, Upp-sala. Ed.: Lars-König Königsson. ISBN: 91-7388-005-1, 158.
  • 20. Chaunsali P., Peethamparan S. (2011), Evolution of strength, mi-crostructure and mineralogical composition of a CKD–GGBFS bind-er. Cement and Concrete Research, 41, 197–208. https://doi.org/10.1016/j.cemconres.2010.11.010
  • 21. Dahlin T., Svensson M., Lindh P. (1999), DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Con-struction. In: Proceedings EEGS’99, Budapest, Hungary, 6-9 Sep-tember 1999, Ls5, 1–3. https://doi.org/10.3997/2214-4609.201406466
  • 22. De Gisi S., Todaro F., Mesto E., Schingaro E., Notarnicola M. (2020), Recycling contaminated marine sediments as filling materials by pilot scale stabilization/solidification with lime, organoclay and ac-tivated carbon. Journal of Cleaner Production, 269, 122416. https://doi.org/10.1016/j.jclepro.2020.122416
  • 23. Eklund B., Watermann B. (2018), Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea. Environmental Science and Pollution Research, 25, 14595–14605. https://doi.org/10.1007/s11356-018-1614-1
  • 24. Evans S.M. (1999), Tributyltin Pollution: the Catastrophe that Never Happened. Marine Pollution Bulletin, 38, 8, 629-636. https://doi.org/10.1016/S0025-326X(99)00040-5
  • 25. Fabian K., Schifano V., De Jong J. (2010), Design and Pilot Tests of Binder Stabilization of Oily Refinery and Dredged Marine Sedi-ments. In: GeoFlorida 2010. February 20-24, 2010, Orlando, Florida, United States, 2472–2481. https://doi.org/10.1061/41095(365)251
  • 26. Faisal A. A., Ahmed D. N., Rezakazemi M., Sivarajasekar N., Sharma G. (2021), Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. Journal of Environmental Chemical Engineering, 9, 105194. https://doi.org/10.1016/j.jece.2021.105194
  • 27. Fan C., Wang B., Qi Y., Liu Z. (2021), Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Management, 131, 277-285. https://doi.org/10.1016/j.wasman.2021.06.011
  • 28. Fiertak M., Stryszewska T. (2013), Resistance of three-component cement binders in highly chemically corrosive environments. Proce-dia Engineering, 57, 278–286. https://doi.org/10.1016/j.proeng.2013.04.038
  • 29. Furdek Turk M., Ivanić M., Dautović J., Bačić N., Mikac N. (2020), Simultaneous analysis of butyltins and total tin in sediments as a tool for the assessment of tributyltin behaviour, long-term persistence and historical contamination in the coastal environment, Chemosphere, 258, 127307. https://doi.org/10.1016/j.chemosphere.2020.127307
  • 30. Ghavami S., Naseri H., Jahanbakhsh H., Moghadas Nejad F. (2021), The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Construction and Building Materials, 285 122918. https://doi.org/10.1016/j.conbuildmat.2021.122918
  • 31. Ghavami S., Rajabi M. (2021), Investigating the Influence of the Combination of Cement Kiln Dust and Fly Ash on Compaction and Strength Characteristics of High-Plasticity Clays. Journal of Civil En-gineering and Materials Application, 5(1), 9-16. https://doi.org/10.22034/jcema.2020.250727.1040
  • 32. Guerriero V., Mazzoli S., Iannace A., Vitale S., Carravetta A., Strauss C. (2013), A permeability model for naturally fractured car-bonate reservoirs. Marine and Petroleum Geology, 40, 115–134. https://doi.org/10.1016/j.marpetgeo.2012.11.002
  • 33. Hasaballah A. F., Hegazy T., Ibrahim M., El-Emam D. A., (2021), Cement kiln dust as an alternative technique for wastewater treat-ment. Ain Shams Engineering Journal, In Press Corrected Proof. https://doi.org/10.1016/j.asej.2021.04.026
  • 34. Herbich, J. B. (1990), Extent of Contaminated Marine Sediments and Cleanup Methodology. 22nd International Conference on Coastal Engineering. July 2-6, 1990, Delft, The Netherlands, pp. 2894-2907. https://doi.org/10.1061/9780872627765.221
  • 35. Hiller E., Jurkovič L., Faragó T., Vítková M., Tóth R., Komárek M. (2021), Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability, Environmental Pollution, 285, 117268. https://doi.org/10.1016/j.envpol.2021.117268
  • 36. Houlihan, M., Bilgen, G., Dayioglu, A. Y., Aydilek, A. H. (2021), Geoenvironmental Evaluation of RCA-Stabilized Dredged Marine Sediments as Embankment Material. Journal of Materials in Civil En-gineering, 33(1), 04020435. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003547
  • 37. Källén H., Heyden A., Åström K., Lindh P. (2016), Measuring and evaluating bitumen coverage of stones using two different digital im-age analysis methods. Measurement, 84, 56–67. https://doi.org/10.1016/j.measurement.2016.02.007
  • 38. Källén H., Heyden A., Lindh P. (2014), Estimation of grain size in asphalt samples using digital image analysis. In: Proceedings of SPIE – The International Society for Optical Engineering, article number 921714, 921714–921714. https://doi.org/10.1117/12.2061730
  • 39. Kim N. S., Shim W. J., Yim U. H., Ha S. Y., An J. G., Shin K. H. (2011), Three decades of TBT contamination in sediments around a large scale shipyard. Journal of Hazardous Materials, 192, 2, 634-642. https://doi.org/10.1016/j.jhazmat.2011.05.065
  • 40. Kuterasińska-Warwas J., Król A. (2017), Leaching of heavy metals from cementitious composites made of new ternary cements. In: E3S Web Conference. International Conference Energy, Environment and Material Systems (EEMS 2017), 19, 02019, 1-8.
  • 41. Lemenkov V., Lemenkova P. (2021a), Measuring Equivalent Cohe-sion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31, 63–84. https://doi.org/10.2478/ceer-2021-0020
  • 42. Lemenkov V., Lemenkova P. (2021b), Using TeX Markup Lan-guage for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences, 46 43–69. https://doi.org/10.2478/fcds-2021-0004
  • 43. Li Y., Bai W., Shi T. (2017), A study of the bonding performance of magnesium phosphate cement on mortar and concrete. Construction and Building Materials, 142, 459–468. https://doi.org/10.1016/j.conbuildmat.2017.03.090
  • 44. Li, J.-S., Zhou, Y.-F., Wang, Q.-M., Xue, Q. (2019). Development of a Novel Binder Using Lime and Incinerated Sewage Sludge Ash to Stabilize and Solidify Contaminated Marine Sediments with High Wa-ter Content as a Fill Material. Journal of Materials in Civil Engineer-ing, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002913
  • 45. Li, J.-S., Zhou, Y.-F., Wang, Q.-M., Xue, Q., Poon, C. S. (2019), Development of a Novel Binder Using Lime and Incinerated Sewage Sludge Ash to Stabilize and Solidify Contaminated Marine Sediments with High Water Content as a Fill Material. Journal of Materials in Civil Engineering, 31(10), 04019245. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002913
  • 46. Lindh P. (2001), Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement, 5, 23–34.
  • 47. Lindh P. (2003), Mcv and shear strength of compacted fine-grained tills. in: Proceedings 12th Asian Regional Conference on Soil Me-chanics and Geotechnical Engineering. 4–8 August 2003, Singapore, 493–496.
  • 48. Lindh P. (2004), Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD Thesis. Lund University, Lund. https://doi.org/10.13140/RG.2.1.1313.6481
  • 49. Lindh P., Dahlin T., Svensson M. (2000), Comparisons between different test methods for soil stabilisation, in: Proceedings of the ISRM International Symposium 2000, IS 2000; Melbourne; Australia. 19-24 November 2000. 1–5.
  • 50. Lu H., Wei F., Tang J., Giesy J. P. (2016), Leaching of metals from cement under simulated environmental conditions, Journal of Envi-ronmental Management, 169, 319-327. https://doi.org/10.1016/j.jenvman.2015.12.008
  • 51. Majdi H. S., Shubbar A. A., Nasr M. S., Al-Khafaji Z. S., Jafer H., Abdulredha M., Masoodi Z. A., Sadique M., Hashim K. (2020), Experimental data on compressive strength and ultrasonic pulse ve-locity properties of sustainable mortar made with high content of GGBFS and CKD combinations. Data in Brief, 31 105961. https://doi.org/10.1016/j.dib.2020.105961
  • 52. Mansour, B. (2021), Valorization of Metal Milling Waste in Cement Based Mortars Modified by Replacement of Cement Kiln Dust. The Journal of Solid Waste Technology and Management, 47(1), 19-30. https://doi.org/10.5276/JSWTM/2021.19
  • 53. Mizerna K., Król A. (2018), Leaching of heavy metals from monolith-ic waste. Environment Protection Engineering, 44(4), 143-158. https://doi.org/10.5277/epe180410
  • 54. Moh Z. C. (1962), Soil Stabilization with Cement and Sodium Addi-tives. Journal of the Soil Mechanics and Foundations Division, 88(6), 81-105. https://doi.org/10.1061/JSFEAQ.0000478
  • 55. Najim K. B., Mahmod Z. S., Atea A. K. M. (2014), Experimental investigation on using cement kiln dust (ckd) as a cement replace-ment material in producing modified cement mortar. Construction and Building Materials, 55, 5–12. https://doi.org/10.1016/j.conbuildmat.2014.01.015
  • 56. Norén, A., Karlfeldt Fedje, K., Strömvall, A.-M., Rauch, S., An-dersson-Sköld, Y. (2021), Low impact leaching agents as remedia-tion media for organotin and metal contaminated sediments. Journal of Environmental Management, 282, 111906. https://doi.org/10.1016/j.jenvman.2020.111906
  • 57. Nosjean N., Khamitov Y., Rodriguez S., Yahia-Cherif R. (2020), Fracture corridor identification through 3D multifocusing to improve well deliverability, an Algerian tight reservoir case study. Solid Earth Sciences, 5 31–49. https://doi.org/10.1016/j.sesci.2019.11.009
  • 58. Nyembwe, K.J., Fosso-Kankeu, El., Waanders, F., Mkandawire, M. (2021), pH-dependent leaching mechanism of carbonatitic chal-copyrite in ferric sulfate solution, Transactions of Nonferrous Metals Society of China, 31(7), 2139-2152. https://doi.org/10.1016/S1003-6326(21)65644-3
  • 59. Pazikowska-Sapota G., Dembska G., Galer-Tatarowicz K., Zega-rowski Ł., Littwin M., Holm G., Kreft-Burman K. (2016), The tests on stabilization of the contaminated sediments for sustainable man-agement in the Baltic Sea region. Bulletin of the Maritime Institute in Gdańsk, 31(1), 11-24.
  • 60. Peethamparan S., Olek J., Lovell J. (2008), Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hy-dration behavior and potential suitability for soil stabilization. Cement and Concrete Research, 38 803–815. https://doi.org/10.1016/j.cemconres.2008.01.011
  • 61. Rađenović, D., Kerkez, Đ., Tomašević Pilipović, D., Dubovina, M., Grba, N., Krčmar, D., Dalmacija, B. (2019), Long-term applica-tion of stabilization/solidification technique on highly contaminated sediments with environment risk assessment. Science of The Total Environment, 684, 186-195. https://doi.org/10.1016/j.scitotenv.2019.05.351
  • 62. Ribeiro D. V., Morelli M. R. (2009), Influence of the addition of grind-ing dust to a magnesium phosphate cement matrix. Construction and Building Materials, 23, 3094–3102. https://doi.org/10.1016/j.conbuildmat.2009.03.013
  • 63. Richardson J. F., Harker J. H., Backhurst J. R. (2002), Chapter 10 – leaching, in: Richardson, J.F., Harker, J.H., Backhurst, J.R. (Eds.), Chemical Engineering (Fifth Edition). fifth edition ed. Butterworth-Heinemann, Oxford. Chemical Engineering Series, 502–541. https://doi.org/10.1016/B978-0-08-049064-9.50021-7
  • 64. Rimal S., Poudel R. K., Gautam, D. (2019), Experimental study on properties of natural soils treated with cement kiln dust. Case Studies in Construction Materials, 10, e00223. https://doi.org/10.1016/j.cscm.2019.e00223
  • 65. Sánchez-García, L., Cato, I., Gustafsson, Ö. (2010), Evaluation of the influence of black carbon on the distribution of PAHs in sedi-ments from along the entire Swedish continental shelf, Marine Chem-istry, 119, 1–4, 44-51. https://doi.org/10.1016/j.marchem.2009.12.005
  • 66. Sariosseiri F., Muhunthan B. (2008), Geotechnical properties of Palouse loess modified with cement kiln dust and Portland cement. In: Proceedings of geocongress 2008, Geochallenge of sustainability in the Geoenvironment, New Orleans, LA.
  • 67. Schifano, V. and Fabian, K. (2010). A Laboratory Study of Binder Stabilization of Oily Refinery and Dredged Marine Sediments. In: GeoFlorida 2010, February 20-24, 2010, Orlando, Florida, U.S., 2482–2491. https://doi.org/10.1061/41095(365)252
  • 68. Shah M., Sircar A., Shah V., Dholakia Y. (2021), Geochemical and Geothermometry study on hot-water springs for understanding pro-spectivity of low enthalpy reservoirs of Dholera Geothermal field, Gu-jarat, India. Solid Earth Sciences, In Press Corrected Proof. https://doi.org/10.1016/j.sesci.2021.04.004
  • 69. Sheikh, M. A., Fasih, M. M., Strand, J., Ali, H. R., Bakar, A. H., Sharif, H. M. (2020), Potential of silicone passive sampler for Tribu-tyltin (TBT) detection in tropical aquatic systems, Regional Studies in Marine Science, 35, 101171. https://doi.org/10.1016/j.rsma.2020.101171
  • 70. Shen W., Shao J., Burlion N., Liu Z. (2020), A microstructure-based constitutive model for cement paste with chemical leaching effect. Mechanics of Materials, 150, 103571. https://doi.org/10.1016/j.mechmat.2020.103571
  • 71. Shen W., Wu M., Zhang B., Xu G., Cai J., Xiong X., Zhao D.: (2021), Coarse aggregate effectiveness in concrete: Quantitative models study on paste thickness, mortar thickness and compressive strength. Construction and Building Materials, 289, 123171. https://doi.org/10.1016/j.conbuildmat.2021.123171
  • 72. Shoaei, P., Zolfaghary, S., Jafari, N., Dehestani, M., & Hejazi, M. (2017), Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete. Advances in Concrete Construction, 5(2), 101-115. https://doi.org/10.12989/acc.2017.5.2.101
  • 73. Shoaib M., Balaha M., Abdel-Rahman A. (2000), Influence of ce-ment kiln dust substitution on the mechanical properties of concrete. Cement and Concrete Research, 30 371–377. https://doi.org/10.1016/S0008-8846(99)00262-8
  • 74. Shubbar A. A., Jafer H., Abdulredha M., Al-Khafaji Z. S., Nasr M. S., Al Masoodi Z., Sadique M. (2020), Properties of cement mortar incorpo- rated high volume fraction of GGBFS and CKD from 1 day to 550 days. Journal of Building Engineering, 30 101327. https://doi.org/10.1016/j.jobe.2020.101327
  • 75. Silva R., de Brito J., Dhir R. (2015), Tensile strength behaviour of recycled aggregate concrete. Construction and Building Materials, 83 108–118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  • 76. Sun, W., Yi, Y. (2021), Acid washing of incineration bottom ash of municipal solid waste: Effects of pH on removal and leaching of heavy metals. Waste Management, 120, 183-192. https://doi.org/10.1016/j.wasman.2020.11.030
  • 77. Sundqvist, K.L., Tysklind, M., Cato, I., Bignert, A., Wiberg, K. (2009), Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea. Environmental Science and Pollution Research, 16, 396–409. https://doi.org/10.1007/s11356-009-0110-z
  • 78. Suzuki, T., Nakase, K., Tamenishi, T., Niinae, M. (2020), Influence of pH and Cations Contained in Rainwater on Leaching of Cd(II) from Artificially Contaminated Montmorillonite, Journal of Environmental Chemical Engineering, 8(5), 104080. https://doi.org/10.1016/j.jece.2020.104080
  • 79. Sveriges geologiska undersökning (2021), Kartvisare Miljöövervakning, havs- och sjösediment (accessed 2021-08-18). https://apps.sgu.se/kartvisare/kartvisare-miljoovervakning-sediment.html
  • 80. Swedish Institute for Standards (2005), Water quality – Determina-tion of selected organotin compounds – Gas chromatographic meth-od (ISO 17353:2004). https://www.sis.se/api/document/preview/40636
  • 81. Swedish Institute for Standards (2014a), Geotechnical investiga-tion and testing – Laboratory testing of soil – Part 1: Determination of water content (ISO 17892-1:2014). https://www.sis.se/api/document/preview/104733/
  • 82. Swedish Institute for Standards (2014b), Geotechnical investiga-tion and testing - Laboratory testing of soil – Part 2: Determination of bulk density (ISO 17892-2:2014) https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/sseniso1789222014/
  • 83. Swedish Institute for Standards (2017a), Geotechnical investiga-tion and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/ss-en-iso-17892-72018
  • 84. Swedish Institute for Standards (2017b), Standard for Geotech-nical investigation and testing – Identification, description and classi-fication of rock, ISO 14689:2017. https://www.sis.se/en/produkter/civil-engineering/earthworks-excavations-foundation-construction-underground-works/ss-en-iso-146892018/
  • 85. Swedish Institute for Standards (2019), Markundersökningar - Lakningsprocedurer för efterföljande kemisk och ekotoxikologisk provning av jord och jordmaterial - del 4: Påverkan av pH på lakning med initial syra/bas tillsats (ISO 21268-4:2019). https://www.sis.se/produkter/miljo-och-halsoskydd-sakerhet/jordkvalitet-pedologi/provtagning-och-undersokning-av-jord/ss-en-iso-21268-42019/
  • 86. Swedish Institute for Standards (2021a), Soil quality – Guidance on leaching procedures for subsequent chemical and ecotoxicologi-cal testing of soils and soil materials (ISO 18772:2008) https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/examination-of-soils/sseniso187722014
  • 87. Swedish Institute for Standards (2021b). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. https://www.sis.se/produkter/externa-kategorier/construction-astm-vol-04/soil-and-rock-ii-d5877--latest-astm-vol-0409/astm-d7928-21e1/
  • 88. Szarek-Gwiazda, E. (2014), Potential effect of pH on the leaching of heavy metals from sediments of the Carpathian dam reservoirs. Ge-ology, Geophysics and Environment, 40(4), 349-358. http://dx.doi.org/10.7494/geol.2014.40.4.349
  • 89. Taha B., Nounu G. (2009), Utilizing waste recycled glass as sand/cement replacement in concrete. Journal of materials in civil engineering, 21, 709–721. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(709)
  • 90. Tang, P.-P., Zhang, W.-L., Chen, Y.-H., Chen, G., Xu, J. (2020), Stabilization/solidification and recycling of sediment from Taihu Lake in China: Engineering behavior and environmental impact. Waste Management, 116, 1-8. https://doi.org/10.1016/j.wasman.2020.07.040
  • 91. Turner J. P., (1994). Soil Stabilization Using Oil‐Shale Solid Waste. Journal of Geotechnical Engineering, 120(4), 646–660. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(646)
  • 92. Viani A., Gualtieri A. F. (2014), Preparation of magnesium phos-phate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, 58, 56–66. https://doi.org/10.1016/j.cemconres.2013.11.016
  • 93. Wang L., Chen L., Provis J. L., Tsang D. C., Poon C. S. (2020), Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites, 106 103489. https://doi.org/10.1016/j.cemconcomp.2019.103489
  • 94. Wang, D. X., Abriak, N. E., Zentar, R., Xu, W. Y., 2011. Geotech-nical Properties of Cement-Based Dredged Marine Sediments As a New Pavement Material. In: GeoHunan International Conference 2011. June 9-11, 2011, Hunan, China, 85-92. https://doi.org/10.1061/47629(408)11
  • 95. Wareham, D. G., Mackechnie, J. R. (2006), Solidification of New Zealand Harbor Sediments Using Cementitious Materials. Journal of Materials in Civil Engineering, 18(2), 311-315. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(311)
  • 96. Wojtkiewicz, M., Stasiek, K., Galer – Tatarowicz, K., Pazikowska – Sapota, G., Dembska, G. (2015), Validation of analytical method for determination of tributyltin (TBT) in soils and bottom sediments. Bulletin of the Maritime Institute in Gdańsk, 30(1), 189-194. https://doi.org/10.5604/12307424.1185609
  • 97. Yaseri S., Masoomi Verki V., Mahdikhani M. (2019), Utilization of high volume cement kiln dust and rice husk ash in the production of sustainable geopolymer. Journal of Cleaner Production, 230, 592–602. https://doi.org/10.1016/j.jclepro.2019.05.056
  • 98. Yoon, I.-H., Moon, D. H., Kim, K.-W., Lee, K.-Y., Lee, J.-H., & Kim, M. G. (2010), Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. Jour-nal of Environmental Management, 91(11), 2322-2328. https://doi.org/10.1016/j.jenvman.2010.06.018
  • 99. Zahran E. (2020), 3D-modeling and lithostratigraphic correlation of the subsurface upper cretaceous Duwi phosphates at Wadi Ash-Shaghab, East Sibaiya area, southern Egypt. Solid Earth Sciences, 5 94–102. https://doi.org/10.1016/j.sesci.2020.04.001
  • 100. Zhang W., Zhao L., Yuan Z., Li D., Morrison L. (2021), Assess-ment of the long-term leaching characteristics of cement-slag stabi-lized/solidified contaminated sediment. Chemosphere, 267, 128926. https://doi.org/10.1016/j.chemosphere.2020.128926
  • 101. Zhang, W.L., McCabe, B.A., Chen, Y.H., Forkan, T.J. (2018), Unsaturated behaviour of a stabilized marine sediment: A compari-son of cement and GGBS binders, Engineering Geology, 246, 57-68. https://doi.org/10.1016/j.enggeo.2018.09.020
  • 102. Zhang, W.-l., Zhao, L.-y., McCabe, B. A., Chen, Y.-h., Morrison, L. (2020), Dredged marine sediments stabilized/solidified with ce-ment and GGBS: Factors affecting mechanical behaviour and leachability. Science of The Total Environment, 733, 138551. https://doi.org/10.1016/j.scitotenv.2020.138551
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cf18574-4a46-4e86-8936-1ddffc649cde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.