PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

New way of producing useful energy from biomass in countries decommissioning coal-fired power plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowy sposób wytwarzania energii z biomasy w krajach likwidujących elektrownie węglowe
Języki publikacji
EN
Abstrakty
EN
This paper describes a new way of processing biomass using micro-CHPU devices (Micro Combined Heat and Power Unit). The micro- -CHPU device is a new idea that allows to convert chemical energy in biomass into electricity for charging batteries in small electric vehicles and into useful heat for households. To make the device readily available and inexpensive, commercial Peltier modules were used, in which their operation was inversed to create the Seebeck effect. !e presented research results show that the commercial Peltier module works very well as a thermoelectric generator. The proposed devices may turn out to be very useful in the times of the revolution that has begun on the energy market in most developing countries. Nowadays, many of these countries are intensively beginning to phase out energetics based on fossil fuels. A very popular and effective method of using biomass is mixing it with coal (in the proportion of 10% to 90%) and burning it in a coal-fired power plant or CHP plant. After closing these power plants, biomass will no longer be burned there. !en, the unused biomass could be burned in micro-CHPU devices. This will prevent biomass waste in agriculture.
PL
W artykule opisano nowy sposób przetwarzania biomasy przy użyciu urządzeń mikro-CHPU (Micro Combined Heat and Power Unit). Urządzenie mikro-CHPU to nowy pomysł, który pozwala na zamianę energii chemicznej zawartej w biomasie na energię elektryczną do ładowania akumulatorów w małych pojazdach elektrycznych oraz w ciepło użytkowe dla gospodarstw domowych. Do budowy zastosowano komercyjne moduły Peltiera, w których działanie ich zostało odwrócone w celu uzyskania efektu Seebecka. Z przedstawionych wyników badań wynika, że komercyjny moduł Peltiera bardzo dobrze sprawdza się jako generator termoelektryczny. Proponowane urządzenia może okazać się bardzo przydatne w dobie rewolucji, która rozpoczęła się na rynku energii w większości krajów rozwijających się. Obecnie wiele z tych krajów intensywnie zaczyna odchodzić od energetyki opartej na paliwach kopalnych. Bardzo popularną i efektywną metodą wykorzystania biomasy jest mieszanie jej z węglem (w proporcji od 10% do 90%) i spalanie w elektrowni węglowej lub elektrociepłowni. Po zamknięciu tych elektrowni niewykorzystana biomasa mogłaby zostać spalona w urządzeniach mikro-CHPU.
Rocznik
Strony
221--230
Opis fizyczny
Bibliogr. 47 poz., rys., tab., zdj.
Twórcy
  • Department of Electrical Engineering and Automation in Industry, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
  • Department of Electrical Engineering and Automation in Industry, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
  • Department of Electrical Engineering and Automation in Industry, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • 1. Gawlik, L., Mokrzycki, E. Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package. Energies 2019, 12, 3323.
  • 2. Kaszyński, P., Kamiński, J. Coal Demand and Environmental Regulations: A Case Study of the Polish Power Sector. Energies 2020, 13, 1521.
  • 3. Manowska, A. Analysis and Forecasting of the Primary Energy Consumption in Poland Using Deep Learning. Journal of the Polish Mineral Engineering Society 2020, 1(45)/1, 217 – 222.
  • 4. Manowska, A, Nowrot, A. The importance of heat emission caused by global energy production in terms of climate impact. Energies 2019,12, 16, 1-12.
  • 5. Manowska, A., Tobor-Osadnik, K., Wyganowska, M. Economic and social aspects of restructuring Polish coal mining: Focusing on Poland and the EU. Resour. Policy 2017. 52, 192-200.
  • 6. Rybak, A., Rybak, A. Possible strategies for hard coal mining in Poland as a result of production function analysis. Resources Policy 2016, 50, 27-33.
  • 7. Rybak, A., Manowska, A. The forecast of coal sales taking the factors influencing the demand for hard coal into account. Mineral Resources Management 2019,35, 1,129—140.
  • 8. Bluszcz, A. The emissivity and energy intensity in EU countries – consequences for the polish economy. Geo Conference. Conference proceedings Energy and Clean Technologies. 2018. 18, 4.2, 631-638.
  • 9. Kijewska, A. Bluszcz, A. Research of varying levels of greenhouse gas emissions in European countries using the k-means method. Atmospheric Pollution Research 2016. 7, 5, 935-944.
  • 10. Bluszcz, A., Manowska, A. Panel analysis to investigate the relationship between economic growth, import, consumption of materials and energy. World Multidisciplinary Earth Sciences Symposium WMESS, Prague, Czech Republic, 2019. Bristol: Institute of Physics, 012153, 1-9.
  • 11. Bluszcz A., Manowska A. Research on the dependence of the level of economic growth on the consumption of materials and energy in selected European Union countries. Mineral Engineering 2019, 20, 2, 239-244.
  • 12. Bluszcz, A. Conditions for maintaining the sustainable development level of EU member states. Social Indicators Research 2018, 139, 2, 679-693.
  • 13. Bluszcz, A. Classification of the European Union member states according to the relative level of sustainable development. Qual. Quan. 2016. 50, 6, 2591-2605.
  • 14. Britannica. Carbon dioxide. https://www.britannica.com/science/global-warming/Carbon-dioxide, [access date 2020- 06-30].
  • 15. Chen, H., Liu, J., Zhang, A., Chen, J., Cheng, J., Sun, B., Pi, X., Dyck, M., Si, B., Zhao, Z., Feng, F. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheatmaize rotation cycles. Science of The Total Environment 2017, 579, 814 – 824. Doi: https://doi.org/10.1016/j.scitotenv. 2016.11.022
  • 16. Hadas, A., Parkin, T. B., Stahl, P. D. Reduced CO2 release from decomposing wheat straw under N-limiting conditions. European Journal of Soil Science 2003, 49(3), 487 – 494, Doi: https://doi.org/10.1046/j.1365-2389.1998.4930487.x
  • 17. Curtin, D., Francis, G.S., McCallum, F.M. Decomposition rate of cereal straw as affected by soil placement. Australian Journal of Soil Research 2008, 46(2), 152-160. Doi: https://doi.org/10.1071/SR07085
  • 18. Power Technology 2020 Power from waste – the world’s biggest biomass power plants, https://powertechnology.com
  • 19. https://www.toyota-tsusho.com/english/press/detail/171106_004061.html
  • 20. BP Statistical Review of World Energy 2019. https://www.bp.com/.
  • 21. Keles, D., Yilmaz H.U. Decarbonisation through coal phase-out in Germany and Europe — Impact on Emissions, electricity prices and power production. Energy Policy 2020, 141, 111472.
  • 22. Macrotrends: https://www.macrotrends.net/countries/POL/poland/coal-usage-consumption [access date 2020-06-30].
  • 23. Ferreira, J., Fernandes, C., Ferreira, F. Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of European countries. Technological Forecasting and Social Change, 2020, 150, 119770.
  • 24. Szczerbowski, R., Kornobis, D. The proposal of an energy mix in the context of changes in Poland’s energy policy. Energy Policy Journal, 2019, 22,3, 5-18.
  • 25. European Commission: Energy, transport and GHG emissions trends to 2050 reference scenario. 2013
  • 26. Sobczyk, W., Pelc ,P., Kowal, B., Ranosz, R. Ecological and economical aspects of solar energy use. E3S Web of Conferences 2017, 14, 01011, 1 – 8.
  • 27. Janeiro, L., Resch, G. The forecast of the achievement of the RES target 2020 for Poland. ECOFYS 2018. (in Polish)
  • 28. International Energy Agency: Raports worlds energy outlook, 2019.
  • 29. The Energy Market Agency. Forecast of demand for fuels and energy until 2030, appendix to the Polish Energy Policy until 2030. Warsaw 2009.
  • 30. The Energy Market Agency. Update of the Forecast of demand for fuels and energy until 2030, Warsaw 2011.
  • 31. Pal, M., Sharma, R.K. Biomass and Bioenergy. Biomass and Bioenergy 2020, 138, 105591.
  • 32. Manowska, A., Rybak, A. Renewable energy sources (RES) and Clean Coal Technologies. Interdisciplinary conference: "Innovative activities of the Silesian University of Technology for climate and environmental protection", as an event accompanying the ceremony of awarding the Honoris Causa Doctorate to Bertrand Piccard, 2018, 7.
  • 33. Manowska, A. Characteristics of mathematical models of coal slurries processing for the purpose of examining the opportunities for improvement of quality parameters. Mining of Sustainable Development 2018, 1-10.
  • 34. Manowska A.: Use of autoregressive models to estimate a demand for hard coal. 18th International Multidisciplinary Scientific GeoConference. SGEM 2018, vol. 18, Ecology, economics, education and legislation. No. 5.3, Environmental economics, Sofia, 2018, 975-982.
  • 35. Uliasz-Bocheńczyk A., Mokrzycki E.: Biomasa jako paliwo w energetyce. Rocznik Ochrona Środowisk 2015, 17, 900-914.
  • 36. Deoloitte A. (ed.): Polish power industry on the wave of megatrends. Forum for Energy Analyzes. Warsaw 2016.
  • 37. Ministry of Energy: Poland's energy policy until 2030. Warsaw, 2018.
  • 38. http://www.allpowerlabs.com/
  • 39. Rowe, DM. CRC Handbook of Thermoelectrics. CRC Press 1995.
  • 40. Nuwayhid, R.Y. , Rowe, D.M., Min, G. Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renewable Energy 2003, 28, 205–222. Doi: https://doi.org/10.1016/S0960-1481(02)00024-1
  • 41. Gao, H. B., Huang, G. H., Li, H. J., Qu, Z. G., Zhang, Y. J. Development of stove-powered thermoelectric generators: A review Applied Thermal Engineering March 2016. Doi: https://doi.org/10.1016/j.applthermaleng.2015.11.032
  • 42. http://www.switchevglobal.com/
  • 43. Thermonamic Electronics, China: http://www.thermonamic.com/pro_view.asp?id=855
  • 44. Lauri Kutta,John Millar Antti Karttunen, Matti Lehtonen, Maarit Karppinen, Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves, Renewable and Sustainable Energy Reviews 98 (2018) 519–544
  • 45. Kari Alanne, Juha Jokisalo, Energy analysis of a novel domestic scale integrated wooden pellet-fueled micro-cogeneration concept, Energy and Buildings, Volume 80, September 2014, 290-301
  • 46. Chojnacka, K., Moustakas, K., Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresource Technology 2020. 290, 122223.
  • 47. Zajac, G., Szyszlak-Bargłowicz, J., Gołebiowski, W., Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cf0222a-2fcd-480b-b0d9-c488f5e58f27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.