PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Loading processes and the resulting load structures induced by processes related to periglacial conditions are compared to those induced by seismic shocks. The load structures themselves are relatively easily recognizable but the responsible trigger mechanism is, though depending on the geological context, commonly difficult to establish. Load structures like load casts, pseudonodules, ball-and-pillow structures and flame structures are commonly ascribed to instable density gradients within sediments and to differential loading, but their formation always requires liquefaction. In glacigenic sediments, deformation structures have most commonly been ascribed to periglacial processes (as a type of cryoturbations), but it becomes ever more clear that glacigenic sediments can, particularly during ice-front fluctuations, be affected by faulting-related earthquakes (due to glacio-isostatic adjustment), and the thus triggered seismic shocks may result in deformations, including - most commonly - load structures. We inventory the evidence that may help to distinguish, on the basis of textural and structural features, load structures with a seismic origin from those that result from periglacial processes, taking into account that truly diagnostic criteria do not exist.
Rocznik
Strony
626--640
Opis fizyczny
Biblogr. 79 poz., fot.
Twórcy
  • Shandong University of Science and Technology, College of Science and Engineering, Qingdao 266590, China
  • Adam Mickiewicz University, Institute of Geology, B. Krygowskiego 12, 61-680 Poznań, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Alexeev, S., Alexeeva, L., Kononov, A., 2014. Cryogenic deformation structures in Late Cenozoic unconsolidated sediments of the Tunka Depression in the Baikal rift zone. Permafrost and Periglacial Processes, 25: 117-126.
  • 2. Alfaro, P., Gibert, L., Moretti, M., García-Tortosa, F.J., Sanz de Galdeano, C., Galindo-Zaldívar, J., López-Garrido. T.C., 2010. The significance of giant seismites in the Plio-Pleistocene Baza palaeo-lake (S Spain). Terra Nova, 22: 172-179.
  • 3. Allen, J.R.L., 1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sedimentary Geology, 46: 67-75.
  • 4. Alsop, G.I., Marco, S., 2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology, 33: 433-457.
  • 5. Ambraseys, N.N., 1988. Engineering seismology. Earthquake Engineering and Structural Dynamics, 17: 1-105.
  • 6. Anketell, J.M., Cegła, J., Dżułyński, S., 1969. Unconformable surfaces formed in the absence of current erosion. Geologica Romana, 8: 41-46.
  • 7. Anketell, J.M., Cegła, J., Dżułyński, S., 1970. On the deformational structures in systems with reverse density gradients. Annales de la Société Géologique de Pologne, 40: 3-30.
  • 8. Belzyt, S., Pisarska-Jamroży, M., 2017. How to study seismites? A review of research methods (in Polish with English summary). Acta Geographica Lodziensia, 106: 171-180.
  • 9. Brandes, C., Winsemann, J., Roskosch, J., Meinsen, J., Tanner, D.C., Frechen, M., Steffen, H., Wu, P., 2012. Activity along the Osning thrust in central Europe during the Lateglacial: Ice-sheet and lithosphere interactions. Quaternary Science Reviews, 38: 49-62.
  • 10. Dasgupta, P., 1998. Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin. India - a plausible origin. Sedimentary Geology, 119: 253-261.
  • 11. Deev, E.V., Zolnikov, I.D., Gus’kov, S.A., 2009. Seismites in Quaternary sediments of southeastern Altai. Russian Geology and Geophysics, 50: 546-561.
  • 12. Dżułyński, S., 1966. Sedimentary structures resulting from convection-like pattern of motions. Annales de la Société Géologique de Pologne, 36: 3-21.
  • 13. Edelman, C.H., Florschütz, F., Jeswiet, J., 1936. Ueber spätpleistozäne und frühholozäne kryoturbate Ablagerungen in den ostlichen Niederlanden. Verhandelingen Koninklijk Mijnbouwkundig Genootschap voor Nederland en Koloniën, Geologische Serie, 11: 301-360.
  • 14. French, H., 2007. The Periglacial Environment. John Wiley and Sons Ltd, Chichester.
  • 15. French, H.M., Goździk, J., 1988. Pleistocene epigenetic and syngenetic frost fissures, Belchatów, Poland. Canadian Journal of Earth Sciences, 25: 2017-2027.
  • 16. French, H.M., Demitroff, M., Forman, S.L., 2005. Evidence for Late-Pleistocene thermokarst in the New Jersey Pine Barrens (latitude 39-N), eastern USA. Permafrost and Periglacial Processes, 16: 173-186.
  • 17. French, H.M., Shur, Y.L., 2010. The principles of cryostratigraphy. Earth-Science Reviews, 101: 190-206.
  • 18. Galli, P., 2000. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324: 169-187.
  • 19. Gruszka, B., Van Loon, A.J., Mokhtari Fard, A., 2016. A fluctuating ice front over an esker near Ryssjön (S Sweden) as a cause of a giant load cast. Sedimentary Geology, 344: 47-56.
  • 20. Harris, C., Murton, J., Davies, M.C.R., 2000. Soft-sediment deformation during thawing of ice-rich frozen soils: results of scaled centrifuge modelling experiments. Sedimentology, 47: 687-700.
  • 21. Hoffmann, G., Reicherter, K., 2012. Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101: 351-363.
  • 22. Houtgast, R.F., Van Balen, R.T., Kasse, C., Vandenberghe, J., 2003. Late Quaternary tectonic evolution and postseismic near surface fault displacements along the Geleen Fault (Feldbiss Fault Zone - Roer Valley Rift System, the Netherlands) based on trenching. Netherlands Journal of Geosciences, 82: 1 77-1 96.
  • 23. Houtgast, R.F., Van Balen, R.T., Kasse, C., 2005. Late Quaternaty evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quaternary Science Reviews, 24: 491-510.
  • 24. Jackson, M.P.A., 1987. Salt tectonics. Scientific American, 257: 70-79.
  • 25. Kasse, C., Huijzer, A., Krzyszkowski, D., Bohncke, S., Coope, G., 1998. Weichselian Late Pleniglacial and Late-Glacial depositional environments, Coleoptera and periglacial climatic records from central Poland (Bełchatów). Journal of Quaternary Science, 13: 455-469.
  • 26. Koç Taşgin, C.K., Türkmen, I., 2009. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çayba - 2 Formation, eastern Turkey. Sedimentary Geology, 218: 16-30.
  • 27. Konrad, J.M., 2005. Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils. Canadian Geotechnical Journal, 42: 38-50.
  • 28. Krzyszkowski, D., 1990. Middle and Late Weischelian stratigraphy and paleoenvironments in central Poland. Boreas, 19: 333-350.
  • 29. Kuenen, Ph.H., 1953. Significant features of graded bedding. AAPG Bulletin, 37: 1044-1066.
  • 30. Lafuente, P., Rodríguez-Pascua, M.A., Simón, J.L., Arlegui, L.E., Liesa, C.L., 2008. Seismites in Pliocene and Pleistocene deposits of the Teruel Graben (in Spanish with English summary). Revista de la Sociedad Geológica de Espańa, 21: 133-149.
  • 31. Lowe, D.R., 1976. Subaqueous liquefied and fluidized flows and their deposits. Sedimentology, 23: 285-308.
  • 32. Macar, P., 1948. Les pseudo-nodules du Famennien et leur origine. Annales de la Société Géologique de Belgique, 72: 47-74.
  • 33. Marco, S., Agnon, A., 1995. High-resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform. Tectonophysics, 408: 101-112.
  • 34. Marks, L., Nitychoruk, J., Majecka, A., Hrychanik, M., 2018. Revised limit of the Saalian ice sheet in central Europe. Quaternary International, 478: 59-74.
  • 35. Mattauer, M., 1973. Les déformations des Matériaux de l'Écorce Terrestre. Hermann (Paris): 493 pp.
  • 36. Moretti, M., Alfaro, P., Caselles, O., Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics, 304: 369-383.
  • 37. Moretti, M., Soria, J.M., Alfaro, P., Walsh, N., 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain). Facies, 44: 283-294.
  • 38. Moretti, M., Van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic' criteria for recognizing ancient seismites. Journal of Palaeogeography, 3: 162-173.
  • 39. Moretti, M., Alfaro, P., Owen, G. eds., 2016. The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sedimentary Geology, 344: 1-408.
  • 40. Morsilli, M., Bucci, M.G., Gliozzi, E., Lisco, S., Moretti, M., 2020. Sedimentary features influencing the occurrence and spatial variability of seismites (late Messinian, Gargano Promontory, southern Italy). Sedimentary Geology, 401: 105628.
  • 41. Mörner, N.A., 1990. Glacial isostasy and long-term crustal movements in Fennoscandia with respect to lithospheric and astheno spheric processes and properties. Tectonophysics, 176: 13-24.
  • 42. Mörner, N.A., 1991. Intense earthquakes and seismotectonics as a function of glacial isostasy. Tectonophysics, 188: 407-410.
  • 43. Murton, J.B., French, H.M., 1993. Thermokarst involutions, summer island, Pleistocene Mackenzie delta, western Canadian arctic. Permafrost and Periglacial Processes, 4: 217-229.
  • 44. Obermeier, S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleolearthquakes. Engineering Geology, 44: 1-76.
  • 45. Ogino, Y., Matsuoka, N., 2007. Involutions resulting from annual freeze-thaw cycles: a laboratory simulation based on observations in northeastern Japan. Permafrost and Periglacial Processes, 18: 323-335.
  • 46. Owen, G., 2003. Load structures: gravity-driven sediment mobilization in the shallow subsurface. In: Subsurface Sediment Mobilizalion (eds. P. Van Rensbergen, R.R. Hillis, A.J. Maltman and C.K. Morley): 21-34. Geological Society, London.
  • 47. Owen, G., Moretti, M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235: 141-147.
  • 48. Owen, G., Moretti, M., Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235: 133-140.
  • 49. Petera-Zganiacz, J., 2016. Determinants of differentiation of the Late Vistulian involutions in the north-western part of the Łódź region (in Polish with English summary). Acta Universitatis Lodziensis Folia Geographica Physica, 15: 45-54.
  • 50. Pisarska-Jamroży, M., Woźniak, P.P., 2019. Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326: 225-238.
  • 51. Pisarska-Jamroży, M., Belzyt, S., Börner, A., Hoffmann, G., Hüneke, H., Kenzler, M., Obst, K., Rother, H., Van Loon, A.J., 2018a. Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745: 338-348.
  • 52. Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusiené, A., Damušyté, A., Woronko, B., 2018b. A glaciolacustrine succession (Dyburiai outcrop, NW Lithuania) with numerous deformed layers sandwiched between undeformed layers. In: Soft-sediment deformation structures and palaeoseismic phenomena in the South-eastern Baltic Region (eds. M. Pisarska-Jamroży and A. Bitinas): 43-48. Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius.
  • 53. Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusiené, A., Woronko, B., 2019a. Seismic shocks, periglacial conditions and glaciotectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32: 63-77.
  • 54. Pisarska-Jamroży, M., Belzyt, S., Börner, A., Hoffmann, G., Hüneke, H., Kenzler, M., Obst, K., Rother, H., Steffen, H., Steffen, R., Van Loon, A.J., 2019b. The sea cliff at Dwasieden: soft-sediment deformation structures triggered by glacial isostatic adjustment in front of the advancing Scandinavian Ice Sheet. Deuqua Special Publications, 2: 61-67.
  • 55. Rana, N., Sati, S.P., Sundriyal, Y., Juyal, N., 2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley, Garhwal Himalaya, India. Sedimentary Geology, 344: 263-276.
  • 56. Rossetti, D.F., 1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, San Luis Basin, northern Brazil: evidence for paleoseismicity. Sedimentology, 46: 1065-1081.
  • 57. Seilacher, A., 1984. Sedimentary structures tentatively attributed to seismic events. Marine Geology, 55: 1-12.
  • 58. Shrock, R.R., 1948. Sequence in Layered Rocks - a Study of Features and Structures Useful for Determining Top and Bottom or Order of Succession in Bedded and Tabular Rock Bodies. McGraw-Hill (New York).
  • 59. Superson, J., Gębica, P., Brzezińska-Wójcik, T., 2010. The origin of deformation structures in periglacial fluvial sediments of the Wisłok valley, southeast Poland. Permafrost and Periglacial Processes, 21: 301-314.
  • 60. Talbot, M.R., Allen, P.A., 1996. Lakes. In: Sedimentary environments - Processes, Facies and Stratigraphy (ed. H.G. Reading): 83-124. Blackwell (Malden/Oxford/Carlton).
  • 61. Tian, H.S., Van Loon, A.J., Wang, H.L., Zhang, S.H., Zhu, J.W., 2016. Seismites in the Dasheng Group: New evidence of strong tectonic and earthquake activities of the Tanlu Fault Zone. Science China, Earth Science, 59: 601-618.
  • 62. Vandenberghe, J., 1988. Cryoturbations. In: Advances in Periglacial Geomorphology (ed. M.J. Clark): 179-198. John Wiley and Sons (Chichester).
  • 63. Vandenberghe, J., 2009. Comment to ‘Zur Struktur und Entstehung von Eiskeil-Grossformen in Lieth/Elmshorn (Schleswig-Holstein)' by A. Grube, 2007 (Quaternary Science Journal 56, 283-294). Journal of Quaternary Science, 58: 107-109.
  • 64. Vandenberghe, J., 2013. Cryoturbation structures. In: The Encyclopedia of Quaternary Science (ed. S.A. Elias): 430-435. Amsterdam, Elsevier.
  • 65. Vandenberghe, J., Van den Broek, J., 1982. Weichselian convolution phenomena and processes in fine sediments. Boreas, 11: 299-315.
  • 66. Vandenberghe, J., Wang, X., Vandenberghe, D., 2016. Very large cryoturbation structures of Last Permafrost Maximum age at the foot of the Qilian Mountains (NE Tibet Plateau, China). Permafrost and Periglacial Processes, 27: 138-143.
  • 67. Vandenberghe, J., Wang, X., Vandenberghe, D., 2017. Comment on ‘Very large cryoturbation structures of Last Permafrost Maximum age at the foot of Qilian Mountains (NE Tibet plateau, China): a discussion' by Stuart A. Harris, Huijun Jin and Ruixia He in PPP. Permafrost and Periglacial Processes, 28: 763-766.
  • 68. Van Loon, A.J. ed., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15: 3-55.
  • 69. Van Loon, A.J., 2014. Seismites and their soft-sediment deformation structures. Geologos, 20: 61-166.
  • 70. Van Loon, A.J., Maulik, P., 2011. Abraded sand volcanoes as a tool for recognizing paleoearthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sedimentary Geology, 238: 145-155.
  • 71. Van Loon, A.J., Pisarska-Jamroży, M., 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology, 300: 1-10.
  • 72. Van Loon, A.J., Wiggers, A.J., 1976. Metasedimentary “graben” and associated structures in the lagoonal Almere Member (Groningen Formation, the Netherlands). Sedimentary Geology, 16: 237-254.
  • 73. Van Loon, A.J., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M., Soms, J., 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5: 363-380.
  • 74. Vanneste, K., Verbeeck, K., 2001. Paleoseismological analysis of the Rurrand fault near Jülich, Roer Valley Graben, Germany: coseismic or aseismic faulting history? Netherlands Journal of Geosciences, 89: 155-169.
  • 75. Vanneste, K., Meghraoui, M., Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, lower Rhine Graben system. Tectonophysics, 309: 57-79.
  • 76. Vanneste, K., Verbeeck, K., Camelbeeck, T., Paulissen, E., Meghraoui, M., Renardy, F., Jongmans, D., Frechen, M., 2001. Surface rupturing history of the Bree fault scarp, Roer Valley Graben. Evidence for six events since the late Pleistocene. Journal of Seismology, 5: 329-359.
  • 77. Van Vliet-Lanoë, B., Magyari, A., Meilliez, F., 2004. Distinguishing between tectonic and periglacial deformation of Quaternary continental deposits in Europe. Global and Planetary Change, 43: 103-127.
  • 78. Van Straaten, L.M.J.U., 1954. Sedimentology of recent tidal X at deposits and the Psammites du Condroz (Devonian). Geologie en Mijnbouw, 16: 25-47.
  • 79. Wu, P., Johnston, P., 2000. Can deglaciation trigger earthquakes in N. America? Geophysical Research Letters, 27: 1323-1326.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ceeb612-1639-420b-a4a4-af5bd6f31d9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.