Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Ocena możliwości zastosowania ultrafiltracji do recyrkulacji popłuczyn w zakładzie oczyszczania wody powierzchniowej
Języki publikacji
Abstrakty
The necessity of rational water resource management and reduction of water consumption demands that water utilities address water losses during water treatment. Therefore, the backwash water generated during the filtration process is often the focus of research aimed at its reuse within the water treatment system. The studies outlined here were conducted in a large water treatment plant (100,000 m3), focusing on the backwash water produced from sand bed filter flushing. Prior to its reintroduction into the treatment train, the backwash water underwent pre-treatment using ultrafiltration (UF) process with two different modules: a spiral module with a PVFD (200kDa) membrane and a capillary module with a PES (80kDa) membrane. The effectiveness of the process was evaluated based on the degree of retention of organic substances and microorganisms, which pose health risks in backwash water recirculation. The capillary membrane exhibited greater effectiveness in retaining these contaminants, thereby ensuring the complete elimination of pathogenic microorganisms. The study findings indicate that pre-treating backwash water using UF membranes and reintroducing it into the water treatment system before the ozonation process can lead to a reduction of environmental fees. However, this process results in a 1.5% increase in water treatment costs.
Konieczność ograniczenia zużycia wody oraz racjonalne gospodarowanie zasobami wodnymi wymusza na przedsiębiorstwach wodociągowych konieczność ograniczenia strat wody podczas jej oczyszczania. Dlatego coraz częściej popłuczyny powstające w procesie filtracji stanowią przedmiot badań, których celem jest ponowne ich wykorzystanie w systemie oczyszczania wody. Prezentowane badania prowadzone były w dużym zakładzie oczyszczania wody powierzchniowej o wydajności 100000 m3/d, a ich przedmiotem były popłuczyny powstające z płukania filtrów ze złożem piaskowym. Popłuczyny podczyszczone były w procesie ultrafiltracji na modułach: spiralnym z membraną z PVDF (200 kDa) i kapilarnym z membraną z PES (80 kDa). Skuteczność procesu oceniono na podstawie stopnia retencji substancji organicznych i mikroorganizmów, które stanowiły zagrożenie zdrowotne w przypadku recyrkulacji popłuczyn. Skuteczniejsza w retencji tych wskaźników okazała się membrana kapilarna, która zapewniła całkowitą eliminację mikroorganizmów patogennych. W badaniach wykazano, że koszty podczyszczania popłuczyn i ich zawracanie do układ oczyszczania wody przed proces ozonowania pozwoli na ograniczenie kosztów korzystania ze środowiska oraz zwiększy koszt oczyszczania wody o 1,5%.
Czasopismo
Rocznik
Tom
Strony
3--13
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr.
Twórcy
autor
- Wroclaw University of Science and Technology, Poland
- Wroclaw University of Science and Technology, Poland
autor
- Wroclaw University of Science and Technology, Poland
- MPWiK S.A we Wrocławiu, Poland
autor
- Wroclaw University of Science and Technology, Poland
Bibliografia
- 1. Ahmed, A.E., Majewska-Nowak, K. & Grzegorzek, M. (2021). Removal of reactive dyes from aqueous solutions using ultrafiltration membranes, Environment Protection Engineering 47, 3, pp. 109-120. DOI:10.37190/epe210309.
- 2. Alhussaini, M.A., Binger, Z., M. Souza-Chaves, B. M., Amusat, O.O., Park, J., Bartholomew, T.V., Gunter, D. & Achilli, A. (2023). Analysis of backwash settings to maximize net water production in an engineering-scale ultrafiltration system for water reuse, Journal of Water Process Engineering 53, 103761. DOI:10.1016/j.jwpe.2023.103761.
- 3. Chen, M., Shen, S., Zhang, F., Zhang, C. & Xiong, J. (2022). Biodegradable dissolved organic carbon (BDOC) removal from micro-polluted water source using ultrafiltration: comparison with conventional processes, operation conditions and membrane fouling control, Polymers. 14, 21, 4689. DOI:10.3390/polym14214689.
- 4. Clostridium perfringens- An overview. https://microbenotes.com/clostridium-perfringens/ Accessed January 19, 2024.
- 5. Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S. & Torretta, V. (2017) Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10, 86.
- 6. Cordier, C., Stavrakakis, C., Morga, B., Degrémont, L., Voulgaris, A., Bacchi, A., Sauvade, P., Coelho, F. & Moulin, P. (2020). Removal of pathogens by ultrafiltration from sea water, Environment international, 142, 105809. DOI:10.1016/j.envint.2020.105809.
- 7. Ćurko, J., Mijatović, I., Rumora, D., Crnek, V., Matošić, M. & Nežić, M. (2013). Treatment of spent filter backwash water from drinking water treatment with immersed ultrafiltration membranes, Desalination and Water Treatment, 51, 25-27, pp. 4901-4906. DOI:10.1080/19443994.2013.774142.
- 8. de Souza, F.H., Pizzolatti, B.S. & Sens, M.L. (2021). Backwash as a simple operational alternative for small-scale slow sand filters: From conception to the current state of the art, Journal of Water Process Engineering 40, 101864. DOI:10.1016/j.jwpe.2020.101864.
- 9. Ebrahimi, M.M., Amin, H., Pourzamani, Y., Hajizadeh, A.H., Mahvi, M.M. & Rad, M.H.R. (2017). Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl 3 as a pre-treatment, Environmental monitoring and assessment, 189, pp. 1-15.DOI:10.1007/s10661-017-6091-3. [Online]. Available: link.springer.com/article/10.1007/s10661-017-6091-3. Accessed 26 March 2024
- 10. EPA United States Environmental Protection Agency. Drinking Water Treatment Plant Residuals Management Technical Report, Summary of Residuals Generation, Treatment, and Disposal at Large Community Water Systems. 2011.
- 11. Gottfried, A., Shepard, A.D., Hardiman, K. & Walsh, M.E. (2008). Impact of recycling filter backwash water on organic removal in coagulation–sedimentation processes, Water Research, 42, 18, pp. 4683–4691. DOI:10.1016/j.watres.2008.08.011.
- 12. Guidelines for drinking-water quality. 4th edition. 2017. Accessed January 19, 2024. https://www.who.int/publications/i/item/9789241549950.
- 13. Guidelines to support the application of Regulation 2020/741 on minimum requirements for water reuse (including Annexes). (2022/C 298/01). 2020. Accessed January 19, 2024. https://environment.ec.europa.eu/publications/minimum-requirements-water-reuse-guidelines_en.
- 14. Howe, K.J. & Clark, K. (2002). Fouling of microfiltration and ultrafiltration membranes by natural waters, Environ. Sci. Technol. 36, 16, pp. 3571-3576. DOI:10.1021/es025587r
- 15. Li, W., Liang, X., Duan, J., Beechamb, S. & Mulcahy, D. (2018). Influence of spent filter backwash water recycling on pesticide removal in a conventional drinking water treatment process, Environmental Science Water Research & Technology, 4, pp. 1057-1067. DOI:10.1039/C7EW00530J.
- 16. Lin, T., Zhang, J. & Chen, W. (2017). Recycling of activated carbon filter backwash water using ultrafiltration: membrane fouling caused by different dominant interfacial forces, Journal of Membrane Science, 544, pp. 174-185. DOI:10.1016/j.memsci.2017.09.028.
- 17. Liu, P.Y., Chin, L.K., Ser, W., Ayi, T.C., Yap, P.H., Bourouina, T. & Leprince-Wang, Y. (2014). Real-time measurement of single bacterium’s refractive index using optofluidic immersion refractometry, Procedia Engineering, 87, pp. 356-359. DOI:10.1016/j.proeng.2014.11.743.
- 18. Mahdavi, M., Ebrahimi, A., Azarpira, H., Tashauoei, H.R. & Mahvi, A.H. (2017). Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultrafiltration, Data in Brief, 15, pp. 916-921. DOI:10.1016/j.dib.2017.10.062.
- 19. Mahmud, M., Elma, M., Rampun, E.L.A., Rahma, A., Pratiwi, A.E., Abdi, C. & Rossadi, R. (2020). Effect of two stages adsorption as pre-treatment of natural organic matter removal in ultrafiltration process for peat water treatment, Materials Science Forum, 988, pp. 114–121. DOI:10.4028/www.scientific.net/msf.988.114.
- 20. Masotti, L. (2011). Depurazione Della Acque—Tecniche ed Impianti per il Trattamento Delle Acque di Rifiuto; Ed. Calderini: Milano, Italy.
- 21. Mazuki Mohamad, N.I., Teow, Y.H., Ho, K.C. & Mohammad, A.W. (2020). Techno-economic analysis of single disinfection units and integrated disinfection systems for sewage effluent reclamation, J. Water Proc. Eng. 36, 101398. DOI:10.1016/j.jwpe.2020.101398.
- 22. Microbentos. https://microbenotes.com/clostridium-perfringens/ Accessed 20.12.2023.
- 23. Peters, C.D., Rantissi, T., Gitis, V. & Hankins, N.P. (2021). Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning -A review, Journal of Water Process Engineering, 44, 102374. DOI:10.1016/j.jwpe.2021.102374.
- 24. Qian, Y., Shi, Y., Guo, J., Chen, Y., Hanigan, D. & Dong, A.(2023) Molecular characterization of disinfection byproduct precursors in filter backwash water from 10 drinking water treatment plants. Science of The Total Environment, 856, 159027. DOI:10.1016/j.scitotenv.2022.159027
- 25. Radzymińska-Lenarcik, E., Urbaniak, W. & Totczyk, G. (2019). Sludge management after water treatment processes, Water Supply and Water Quality: pp. 995-1004. (in Polish). https://www.researchgate.net/publication/331967930_ZAGOSPODAROWANIE_OSADOW_POKOAGULACYJNYCH_POWSTALYCH_W_PROCESIE_UZDA_TNIANIA_WODY. Accessed January 19, 2024.
- 26. Reissmann, F. G. & Uhl, W. (2006). Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment, Desalination 198, 1–3, pp. 225-235. DOI:10.1016/j.desal.2006.03.517
- 27. Shafiquzzaman, M., AlSaleem, S.S., Haider, H., Alresheedi, M.T. & Thabit H. (2021). Experimental study for sand filter backwash water management: low-cost treatment for recycling and residual sludge utilization for radium removal, Water, 13, 2799. DOI:10.3390/w13202799.
- 28. Sosnowski, T., Suchecka, T. & Piątkiewicz, W. (2004). Penetration of the cell through the microfitration membrane, in Environmental Engineering Committee Monographs. [ed.] Polish Academy of Sciences. Environmental Engineering Committee. 22: pp. 359-367.
- 29. Subasi, Y. & Cicek, C. (2017). Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part I, Membrane Technology 10, pp. 7-12. DOI:10.1016/S0958-2118(17)30191-X.
- 30. Sun, Y., Wu, M., Tong, T., Liu, P., Tang, P., Gan, Z., Yang, P., He, H. & Liu B. (2021). Organic compounds in Weiyuan shale gas produced water: identification, detection and rejection by ultrafiltration-reverse osmosis processes, Chemical Engineering Journal, 412, 128699. DOI:10.1016/j.cej.2021.128699.
- 31. Turan, M. (2023). Backwashing of granular media filters and membranes for water treatment: a review, AQUA-Water Infrastructure, Ecosystems and Society, 72, 3, pp. 274-298. DOI:10.2166/aqua.2023.207.
- 32. Wang, D., Zhou, J., Lin, H., Chen, J., Qi, J., Bai, Y. & Qu, J. (2023). Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand filters, Frontiers of Environmental Science & Engineering, 17, 3, 34. DOI:10.1007/s11783-023-1634-z.
- 33. Wolska, M. & Urbańska-Kozłowska, H. (2023). Assessing the Possibilities of Backwash Water Reuse Filters in the Water Treatment System—Case Analysis, Water, 15, 13, 2452. DOI:10.3390/w15132452.
- 34. Zhou, Z., Yang, Y., Li, X., Su, Z., Liu, Y., Ren, Y. & Zhang, Y. (2015) Effect of recycling filter backwash water on characteristic variability of dissolved organic matter in coagulation sedimentation process, Desalination and Water Treatment, 53, pp. 48-56, DOI:10.1080/19443994.2013.836994.
- 35. Zielina, M. & Dąbrowski, W. (2021). Energy and water savings during backwashing of rapid filter plants, Energies, 14, 13, 3782. DOI:10.3390/en14133782.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cecdeb3-90ca-4da1-a4cf-bdeb98613a40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.