PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Preparation and Properties of Low-Nitrogen Nitrocellulose by Alkaline Denitration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waste high-nitrogen nitrocellulose (NC) has always been disposed of as hazardous material for destruction, and has not been recycled as a resource. The present work describes how waste high-nitrogen NC may be converted to low-nitrogen NC via an alkaline denitration reaction between sodium hydrosulfide and the nitrate ester groups, in order to control and reduce the nitrogen content for industrial products. Scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance spectroscopy (1H NMR) and X-ray diffraction (XRD) were used to detected the changes in the surface morphology and chemical structure of the NC samples. TG-DSC tests analyzed the decomposition temperature and the heat released on thermal decomposition, and the explosion heat was obtained by calorimetry. The results demonstrated that the denitration reaction does not destroy the skeletal structure of NC. Notably, the nitrogen content of NC may be reduced from 12.92 to 10.74%, generating the level for industrial products (N <12%). Moreover, NC samples with different nitrogen contents have similar decomposition trends and decomposition temperatures, but the heat released is gradually decreased and the explosion heat is significantly reduced, and confirms the successful partial removal of nitrate ester groups from NC. Therefore, the alkaline denitration affords a potential method for recycling waste high-nitrogen NC.
Rocznik
Strony
535--551
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Key Laboratory of Special Energy Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Key Laboratory of Special Energy Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Key Laboratory of Special Energy Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Key Laboratory of Special Energy Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
Bibliografia
  • [1] De La Ossa, M.Á.F.; López-López, M.; Torre, M.; García-Ruiz, C. Analytical Techniques in the Study of Highly-nitrated Nitrocellulose. Trends. Analyt. Chem. 2011, 30(11): 1740-1755.
  • [2] Alinat, E.; Delaunay, N.; Archer, X.; Vial, J.; Gareil, P. Multivariate Optimization of the Denitration Reaction of Nitrocelluloses for Safer Determination of their Nitrogen Content. Forensic Sci. Int. 2015, 250: 68-76.
  • [3] MacMillan, D.K.; Majerus, C.R.; Laubscher, R.D.; Shannon, J.P. A Reproducible Method for Determination of Nitrocellulose in Soil. Talanta 2008, 7(4): 1026-1031.
  • [4] Moniruzzaman, M.; Bellerby, J.M.; Bohn, M.A. Activation Energies for the Decomposition of Nitrate Ester Groups at the Anhydroglucopyranose Ring Positions C2, C3 and C6 of Nitrocellulose Using the Nitration of a Dye as Probe. Polym. Degrad. Stab. 2014, 102: 49-58.
  • [5] Wei, R.-C.; He, Y.-P.; Liu, J.-H.; He, Y.; Mi, W.-Z.; Yuen, R.; Wang, J. Experimental Study on the Fire Properties of Nitrocellulose with Different Structures. Materials 2017, 10(3): 316-331.
  • [6] Luo, Q.-B.; Ren, T.; Shen, H.; Zhang, J.; Liang, D. The Thermal Properties of Nitrocellulose: from Thermal Decomposition to Thermal Explosion. Combust. Sci. Technol. 2018, 190(4): 579-590.
  • [7] Liu, J.-H.; Chen, M.-Y. A Simplified Method to Predict the Heat Release Rate of Industrial Nitrocellulose Materials. Appl. Sci. 2018, 8(6): 910-923.
  • [8] Sullivan, F.; Simon, L.; Ioannidis, N.; Patel, S.; Ophir, Z.; Gogos, C.; Jaffe, M.; Tirmizi, S.; Bonnett, P.; Abbate, P. Chemical Reaction Modeling of Industrial Scale Nitrocellulose Production for Military Applications. AIChE J., 2020, 66: e16234.
  • [9] Ferreira, C.; Ribeiro, J.; Clift, R.; Freire, F. A Circular Economy Approach to Military Munitions: Valorization of Energetic Material from Ammunition Disposal through Incorporation in Civil Explosives. Sustainability 2019, 11(1): 255-268.
  • [10] Cheng, M.; Zeng, G.-M.; Huang, D.-L.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl Radicals Based Advanced Oxidation Processes (Aops) for Remediation of Soils Contaminated with Organic Compounds: A Review. Chem. Eng. J. 2016, 284:582-598.
  • [11] Ayoub, K.; van Hullebusch, E.D.; Cassir, M.; Bermond, A. Application of Advanced Oxidation Processes for TNT Removal: A Review. J. Hazard. Mater. 2010, 178(1-3): 10-28.
  • [12] López-López, M.; De La Ossa, M.Á.F.; Galindo, J.S.; Ferrando, J.L.; Vega, A.;Torre, M.; García-Ruiz, C. New Protocol for the Isolation of Nitrocellulose from Gunpowders: Utility in their Identification. Talanta 2010, 81(4-5): 1742-1749.
  • [13] Freedman, D.L.; Cashwell, J.M.; Kim, B.J. Biotransformation of Explosive-grade Nitrocellulose under Denitrifying and Sulfidogenic Conditions. Waste Manage. 2002, 22(3): 283-292.
  • [14] López-López, M.; Alegre, J.M.R.; García-Ruiz, C.; Torre, M. Determination of the Nitrogen Content of Nitrocellulose from Smokeless Gunpowders and Collodions by Alkaline Hydrolysis and Ion Chromatography. Anal. Chim. Acta 2011, 685(2):196-203.
  • [15] Knill, C.J.; Kennedy, J.F. Degradation of Cellulose under Alkaline Conditions. Carbohydr. Polym. 2003, 51(3): 281-300.
  • [16] Shukla, M.K.; Hill, F. Computational Elucidation of Mechanisms of Alkaline Hydrolysis of Nitrocellulose: Dimer and Trimer Models with Comparison to the Corresponding Monomer. J. Phys. Chem., A 2012, 116(29): 7746-7755.
  • [17] Shukla, M.K.; Hill, F. Theoretical Investigation of Reaction Mechanisms of Alkaline Hydrolysis of 2,3,6-trinitro-β-D-glucopyranose as a Monomer of Nitrocellulose. Struct. Chem. 2012, 23(6): 1905-1920.
  • [18] Christodoulatos, C.; Su, T.L.; Koutsospyros, A. Kinetics of the Alkaline Hydrolysis of Nitrocellulose. Water Environ. Res. 2001, 73(2): 185-191.
  • [19] Alinat, E.; Delaunay, N.; Archer, X.; Mallet, J.M.; Gareil, P. A New Method for the Determination of the Nitrogen Content of Nitrocellulose Based on the Molar Ratio of Nitrite-to-Nitrate Ions Released after Alkaline Hydrolysis. J. Hazard. Mater. 2015, 286: 92-99.
  • [20] Raeisi, M.; Najafpour, G.D. Alkaline Hydrolysis of Waste Nitrocellulose for Recovery of Pure Cellulose. Iran. J. Energy Environ. 2011. 2(3): 221-228.
  • [21] Alleman, J.E.; Kim, B.J.; Quivey, D.M.; Equihua, L.O. Alkaline Hydrolysis of Munitions-grade Nitrocellulose. Water Sci. Technol. 1994, 30(3): 63-72.
  • [22] Urbanski, T. Chemistry and Technology of Explosives. 2nd vol., Pergamon Press, New York, 1965, pp. 304-306.
  • [23] Li, S.-Y.; Tao, Z.-A.; Ding, Y.-J.; Liang, H.; Zhao, X.-Z.; Xiao, Z.-L.; Li, C.-Z.; Ou, J.-Y. Gradient Denitration Strategy Eliminates Phthalates Associated Potential Hazards during Gun Propellant Production and Application. Propellants Explos.Pyrotech. 2020, 45: 1156-1163.
  • [24] Saunders, C.W.; Taylor, L.T. A Review of the Synthesis, Chemistry and Analysis of Nitrocellulose. J. Energ. Mater. 1990, 8(3):149-203.
  • [25] Li, J.; Yin, X.-H.; Liu, Z.-K.; Gu, Z.-L.; Niu, J.-X. Reaction Yield Model of Nitrocellulose Alkaline Hydrolysis. J. Hazard. Mater. 2019, 371: 603-608.
  • [26] Merrow, R.T.; Cristol, S.J.; Dolah, R.W.V. The Reaction of n-Butyl Nitrate with Alkaline Hydrosulfides. J. Am. Chem. Soc. 1953, 75(17): 4259-4265.
  • [27] Neves, A.; Angelin, E.M.; Roldão, É.; Melo, M.J. New Insights into the Degradation Mechanism of Cellulose Nitrate in Cinematographic Films by Raman Microscopy. J. Raman Spectrosc. 2019, 50(2): 202-212.
  • [28] Trache, D.; Tarchoun, A.F. Differentiation of Stabilized Nitrocellulose during Artificial Aging: Spectroscopy Methods Coupled with Principal Component Analysis. J. Chemom. 2019, 33(8): 3163-3178.
  • [29] Luo, L.-Q.; Jin, B.; Xiao, Y.-Y.; Zhang, Q.-C.; Chai, Z.-H.; Huang, Q.; Chu, S.-J.; Peng, R.-F. Study on the Isothermal Decomposition Kinetics and Mechanism of Nitrocellulose. Polym. Test. 2019, 75: 337-343.
  • [30] Curtis, N.; Vanaltena, I.; Hounslow, A. New and Revised Spectral Assignments of Nitrocelluloses: The 1H and 13C NMR Spectra of Cellulose 2,3,6-Trinitrate and Cellulose 3,6-Dinitrate. Aust. J. Chem. 1992, 45(3): 627-634.
  • [31] Chai, H.; Duan, Q.-L.; Cao, H.-Q.; Li, M.; Sun, J.-H. Effects of Nitrogen Content on Pyrolysis Behavior of Nitrocellulose. Fuel 2020, 264: 116853-116863.
  • [32] Alinat, E.; Delaunay, N.; Costanza, C.; Archer, X.; Gareil, P. Determination of the Nitrogen Content of Nitrocellulose by Capillary Electrophoresis after Alkaline Denitration. Talanta 2014, 125: 174-180.
  • [33] Zhao, B. Facts and Lessons Related to the Explosion Accident in Tianjin Port, China. Nat. Hazards 2016, 84(1): 707-713.
  • [34] He, Y.; He, Y.-P.; Liu, J.-H.; Li, P.; Chen, M.-Y.; Wei, R.-C.; Wang, J. Experimental Study on the Thermal Decomposition and Combustion Characteristics of Nitrocellulose with Different Alcohol Humectants. J. Hazard. Mater. 2017, 340: 202-212.
  • [35] Wei, R.-C.; Huang, S.-S.; Wang, Z.; He, Y.; Yuen, R.; Wang, J. Estimation on the Safe Storage Temperature of Nitrocellulose with Different Humectants. Propellants Explos. Pyrotech. 2018, 43(11): 1122-1128.
  • [36] Wei, R.-C.; Huang, S.-S.; Wang, Z.; Yuen, R.; Wang, J. Evaluation of the Critical Safety Temperature of Nitrocellulose in Different Forms. J. Loss Prev. Process. Ind. 2018, 56: 289-299.
  • [37] Trache, D.; Tarchoun, A.F. Stabilizers for Nitrate Ester-based Energetic Materials and their Mechanism of Action: A State-of-the-art Review. J. Mater. Sci. 2018, 53(1): 100-123.
  • [38] Wei, R.-C.; Huang, S.-S.; Wang, Z.; Wang, X.-H.; Ding, C.; Yuen, R.; Wang, J. Thermal Behavior of Nitrocellulose with Different Aging Periods. J. Therm. Anal. Calorim. 2019, 136(2): 651-660.
  • [39] Kiciński, W.; Trzciński, W.A. Calorimetry Studies of Explosion Heat of Non-ideal Explosives. J. Therm. Anal. Calorim. 2009, 96(2): 623-630.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ce762a9-4001-489f-b218-ec23ddc6d84e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.