PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural modification of cellulose to enhance the flotation efficiency of fine copper oxide ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using more efficient collector to improve the recovery efficiency of fine copper oxide has become imperative as the shortage of copper mineral resources. In this study, the new collector 3-hydroxy butyrate-carboxy methyl cellulose xanthate (HCMCX) was synthesized by carboxy methyl cellulose, 3-hydroxy butyrate and carbon disulfide, all of which as raw materials . The structural characteristics of HCMCX was detected by both infrared spectrum and ultraviolet spectrum. Besides, the interacting behavior between HCMCX and fine malachite was investigated through particle size analysis, contact angle measurements, and flotation tests. Particle size analysis indicated that the mean size of malachite was increased by 8 μm while the HCMCX concentration at 200 mg/dm3. The contact angle measurements demonstrated that, comparing with the collector AX at a same dosage, the mineral surface of malachite showed a stronger hydrophobicity after interacting with HCMCX. Microflotation tests results exhibited that the recovery of malachite was about 94% when the pulp pH 8 and collector concentration at 200 mg/dm3. The results of practical ore flotation tests showed that HCMCX could as an excellent collector for flotation of fine malachite, finally to achieve the concentrates containing 20% Cu and 88% Cu recovery.
Rocznik
Strony
58--69
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, Sichuan, China
  • School of Minerals Processing and Bio-engineering, Central South University, Changsha 410083, Hunan, China
Bibliografia
  • ATTIA, Y.A., KITCHENER, J.A., 1975. Development of complexing polymers for the selective flocculation of copper minerals, 11th International Mineral Processing Congress, Cagliara, Italy,197.
  • BEDIAKO, J. K., WEI, W., KIM, S., YUN, Y.S., 2015. Removal of heavy metals from aqueous phases using chemically modified waste lyocell fiber. J. Hazard. Mater., 299, 550-561.
  • CHEN, X.L., LIU, X.S., QIN, G., 2010. Experimental study on Beneficiation of a new type of oxidized copper ore collector OK2033. Nonferrous Min. Metall., 26(5), 17-19.
  • CHEN, J., XU, Z. H., 1985. Advances in selective flocculation theory. Nonferrous Met. (English Edition) (01), 16-24.
  • DERRICK, M.R., STULIK, D., LANDRY, J.M., 1999. Infrared Spectroscopy in Conservation Science, 1st ed., The Getty Conservation Institute, L/A, USA.
  • DUX, J.P., PHIFER, L.H., 1957. Determination of Xanthate Sulfur in Viscose. Anal. Chem., 29(12), 1842-1845.
  • FANG, J., 2002. Study on the material composition and flotation process of refractory oxidized copper ore in Dongchuan. Doctoral dissertation, Kunming university of science and technology.
  • GAO, Z., SUN, W., HU, Y., LIU, X., 2013. Surface energies and appearances of commonly exposed surfaces of Scheelite crystal. Trains. Nonferrous Met. Soc. China, 23(7), 2147-2152.
  • GAO, Z., SUN, W., HU, Y., 2014. Mineral cleavage nature and surface energy: anisotropic surface broken bonds consideration. Trains. Nonferrous Met. Soc. China 24(9), 2930-2937.
  • GE, Y., XIAO, D., LI, Z., CUI, X., 2015. Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. J. Mater. Chem. A, 3(14), 7666-7666.
  • HU, Y.H., LIU, G.X., WANG, D.Z., 1986. Sulfur non-ionic flotation of copper oxide polar catch. Nonferrous Met. Eng. (02), 30-35.
  • KIM, H. T., LEE, K., 1999. Application of insoluble cellulose xanthate for the removal of heavy metals from aqueous solution. Korean Journal of Chemical Engineering, 16(3), 298-302.
  • KLEMM., D., HEUBLEIN, B., FINK, H.-P., BOHN, A., 2005. Cellulose: fascinating biopolymer and sustainable raw material. Cheminform, 44(22), 3358-3393
  • KONG, Y., GE, Y., 2015. Synthesis of porous lignin xanthate resin for Pb2+removalfrom aqueous solution, Chem. Eng. J. 270, 229–234.
  • LI, X., HU, Y., ZHANG, B., 2014. Kinetics and equilibrium adsorption of copper(II)and nickel(II) ions from aqueous solution using sawdust xanthate modifiedwith ethanediamine, Trans. Nonferrous Met. Soc. 24, 868-875.
  • LI, Z., KONG, Y., GE, Y., 2015. Synthesis of porous lignin xanthate resin for Pb2+, removal from aqueous solution. Chem. Eng. J., 270, 229-234.
  • LIU, CH., 2012. Study and application of sulfide flotation of typical oxidized copper ores. Doctoral dissertation, Jiangxi University of Science and Technology.
  • LIU, D.W., SHANG, X., FANG, J., 2010. Study on mineral flotation of fine particles of copper oxide. China Min., 19(1), 79-81.
  • LIU W., WEI D. Z., WANG B. Y., 2009. A new collector used for flotation of oxide minerals. Transactions of Nonferrous Metals Society of China, 19(5):1326-1330.
  • LIU, Q., WANNAS, D., PENG, Y., 2006. Exploiting the dual functions of polymer depressants in fine particle flotation. Int. J. Miner. Process., 79(2), 244-254.
  • MA, X., XIA, L., WANG, S., ZHONG, H., JIA, H., 2017. The structural modification of xanthate collectors to enhance the flotation selectivity of chalcopyrite. Industrial & Engineering Chemistry Research, 56(21), 6307–6316.
  • PILLAI, S.S., DEEPA, B., ABRAHAM, E., GIRIJA, N., GEETHA, P., JACOB, L., KOSHY, M., 2013. Biosorption of Cd(II) from aqueous solution using xanthated nano bananacellulose: equilibrium and kinetic studies, Ecotoxicol. Environ. Saf., 98, 352-360.
  • SCHULZE, H.J., RADOEV, B., GEIDEL, T., STECHEMESSER, H., TOPFER, E., 1989. Investigations of the collision process between particles and gas bubbles in flotation - a theoretical analysis. Int. J. Miner. Process., 27, 263-278.
  • SHEN L., ZHU, J., LIU, L., 2017. Flotation of fine kaolinite using dodecylamine chloride/fatty acids mixture as collector. Powder Technol., 312, 159-165.
  • SHIBATA, J., FUERSTENAU, D.W., 2003. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int. J. Miner. Process., 72(1–4), 25-32.
  • SUN, W., DENG, M.J., HU, Y.H., 2009. Fine particle aggregating and flotation behavior induced by high intensity conditioning of a CO2 saturation slurry. Int. J. Min. Sci. Technol., 19(4), 483-488
  • SANTOS, V. C. G. D., SOUZA, J. V. T. M. D., TARLEY, C. R. T., CAETANO, J., DRAGUNSKI, D. C., 2011. Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water Air Soil Pollut., 216(1-4), 351-359.
  • SOCRATES, G., 2004. Infrared and Raman Characteristic Group Frequencies. John Wiley & Sons: Chichester, U.K.
  • WARREN, L.J. 1984. Ultrafine particles in flotation. In: Jones, M.H., Woodcock, J.T. (Eds.), Principles of Mineral Flotation. Australian IMM, Melbourne, pp. 185-214.
  • YANG, S.P., FU, S.Y., LIU, H., ZHOU, Y.M., LI, X.Y., 2011. Hydrogel beads based oncarboxymethyl cellulose for removal heavy metal ions. J. Appl. Polym. Sci. 119, 1204-1210.
  • ZAWAWY, W.K., 2006. Blended graft copolymer of carboxymethyl cellulose and poly(vinyl alcohol) with banana fiber, J. Appl. Polym. Sci. 100, 1842–1848.
  • ZHANG, Y., LUO, C., WANG, H., HAN, L., WANG, C., JIE, X., et al. 2016. Modified adsorbent hydroxypropyl cellulose xanthate for removal of Cu2+ and Ni2+ from aqueous solution. Desalin. Water Treat, 1-13.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cdf11a6-44dc-4187-b52e-5a7d9b8a69da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.